Yam Code
Sign up
Login
New paste
Home
Trending
Archive
English
English
Tiếng Việt
भारत
Sign up
Login
New Paste
Browse
https://www.selleckchem.com/products/eft-508.html Mixed surfactants have a prominent synergistic effect and show advantages in many aspects. In this work, the effects of a mixture of dodecyltrimethylammonium bromide (DTAB) and sodium dodecyl sulfate (SDS) on the flotation of low-rank coal were studied from the wetting rate, contact angle, surface tension, and zeta potential. Furthermore, the adsorption configuration of the mixed surfactant on the surface of oxygen-containing graphite was simulated at the molecular level by molecular dynamics simulation. The experimental results show that the combustible matter recovery of low-rank coal flotation is improved using the mixed surfactant, and the contact angle test and wetting rate test confirmed the synergistic effect of the mixed surfactant. In the mixed surfactant system, the addition of SDS with an opposite charge to DTAB can reduce the mutual repulsion between DTAB molecules and enhance the degree of DTAB alignment in solution, which was analyzed by surface tension and zeta potential tests. Meanwhile, the simulation results reveal the adsorption behavior of anionic and cationic surfactants on the surface of oxygen-containing graphite from the molecular level and also verify the experimental results. This investigation provides a good understanding of the interaction mechanism of mixed surfactants in low-rank coal flotation.The spontaneous combustion of the sulfur concentrate is the main hazard faced in ore storage bins. To understand the thermodynamic characteristics of spontaneous combustion of the sulfur concentrate and test whether the kinetic compensation effects are present in the spontaneous combustion process of the sulfur concentrate, typical sulfur concentrate samples were selected as the research object, and thermogravimetric experiments were carried out under an air atmosphere at heating rates of 5, 10, and 15 K/min. On this basis, the contributions of different reaction models to the mass change during
Paste Settings
Paste Title :
[Optional]
Paste Folder :
[Optional]
Select
Syntax Highlighting :
[Optional]
Select
Markup
CSS
JavaScript
Bash
C
C#
C++
Java
JSON
Lua
Plaintext
C-like
ABAP
ActionScript
Ada
Apache Configuration
APL
AppleScript
Arduino
ARFF
AsciiDoc
6502 Assembly
ASP.NET (C#)
AutoHotKey
AutoIt
Basic
Batch
Bison
Brainfuck
Bro
CoffeeScript
Clojure
Crystal
Content-Security-Policy
CSS Extras
D
Dart
Diff
Django/Jinja2
Docker
Eiffel
Elixir
Elm
ERB
Erlang
F#
Flow
Fortran
GEDCOM
Gherkin
Git
GLSL
GameMaker Language
Go
GraphQL
Groovy
Haml
Handlebars
Haskell
Haxe
HTTP
HTTP Public-Key-Pins
HTTP Strict-Transport-Security
IchigoJam
Icon
Inform 7
INI
IO
J
Jolie
Julia
Keyman
Kotlin
LaTeX
Less
Liquid
Lisp
LiveScript
LOLCODE
Makefile
Markdown
Markup templating
MATLAB
MEL
Mizar
Monkey
N4JS
NASM
nginx
Nim
Nix
NSIS
Objective-C
OCaml
OpenCL
Oz
PARI/GP
Parser
Pascal
Perl
PHP
PHP Extras
PL/SQL
PowerShell
Processing
Prolog
.properties
Protocol Buffers
Pug
Puppet
Pure
Python
Q (kdb+ database)
Qore
R
React JSX
React TSX
Ren'py
Reason
reST (reStructuredText)
Rip
Roboconf
Ruby
Rust
SAS
Sass (Sass)
Sass (Scss)
Scala
Scheme
Smalltalk
Smarty
SQL
Soy (Closure Template)
Stylus
Swift
TAP
Tcl
Textile
Template Toolkit 2
Twig
TypeScript
VB.Net
Velocity
Verilog
VHDL
vim
Visual Basic
WebAssembly
Wiki markup
Xeora
Xojo (REALbasic)
XQuery
YAML
HTML
Paste Expiration :
[Optional]
Never
Self Destroy
10 Minutes
1 Hour
1 Day
1 Week
2 Weeks
1 Month
6 Months
1 Year
Paste Status :
[Optional]
Public
Unlisted
Private (members only)
Password :
[Optional]
Description:
[Optional]
Tags:
[Optional]
Encrypt Paste
(
?
)
Create New Paste
You are currently not logged in, this means you can not edit or delete anything you paste.
Sign Up
or
Login
Site Languages
×
English
Tiếng Việt
भारत