Yam Code
Sign up
Login
New paste
Home
Trending
Archive
English
English
Tiếng Việt
भारत
Sign up
Login
New Paste
Browse
https://www.selleckchem.com/products/fl118.html Doxorubicin (DOX) is a chemotherapeutic agent broadly used in the treatment of a range of solid tumors. In spite of its high potency, as is the case for many other chemotherapeutic drugs, there are many challenges associated with the use of DOX in clinical oncology. This is particularly true for DOX in the treatment of lung cancer, where in vitro potency is shown to be very high, but low lung distribution and off-target toxicity (particularly cardiotoxicity) restrict its use. Nanocarrier-based drug delivery systems (nanoDDS) have been shown to help alter biodistribution and alleviate off-target toxicity associated with DOX. While significant understanding exists regarding the design parameters to achieve those clinical benefits, much less is known regarding the design of nanoDDS capable of enhancing tumor penetration of DOX (and other drugs), which is another major factor leading to DOX's reduced efficacy. The purpose of this study was to design a dendrimer-based nanoDDS capable of enhancing the penetration ole amine of DOX upon conjugation, and the HD of the conjugate is kept smaller than the estimated mesh size of the ECM. Interestingly, the conjugate provided more specificity for DOX to tumor cells compared to fibroblasts, while free DOX is equally distributed in both tumor and fibroblasts as assessed in the coculture spheroids. Growth inhibition studies show that the released DOX maintains its activity and leads to tumor reduction to the same extent as free DOX. The results obtained here are of relevance for the design of dendrimer-based nanoDDS and for the treatment of solid tumors as they provide critical information regarding desirable surface characteristics and sizes for efficient tumor penetration.The structure of the electrical double layer at the interface of planar electrodes and aqueous solutions is investigated. Electrical impedance spectroscopy is used to measure the impedance of aqueous solutions of so
Paste Settings
Paste Title :
[Optional]
Paste Folder :
[Optional]
Select
Syntax Highlighting :
[Optional]
Select
Markup
CSS
JavaScript
Bash
C
C#
C++
Java
JSON
Lua
Plaintext
C-like
ABAP
ActionScript
Ada
Apache Configuration
APL
AppleScript
Arduino
ARFF
AsciiDoc
6502 Assembly
ASP.NET (C#)
AutoHotKey
AutoIt
Basic
Batch
Bison
Brainfuck
Bro
CoffeeScript
Clojure
Crystal
Content-Security-Policy
CSS Extras
D
Dart
Diff
Django/Jinja2
Docker
Eiffel
Elixir
Elm
ERB
Erlang
F#
Flow
Fortran
GEDCOM
Gherkin
Git
GLSL
GameMaker Language
Go
GraphQL
Groovy
Haml
Handlebars
Haskell
Haxe
HTTP
HTTP Public-Key-Pins
HTTP Strict-Transport-Security
IchigoJam
Icon
Inform 7
INI
IO
J
Jolie
Julia
Keyman
Kotlin
LaTeX
Less
Liquid
Lisp
LiveScript
LOLCODE
Makefile
Markdown
Markup templating
MATLAB
MEL
Mizar
Monkey
N4JS
NASM
nginx
Nim
Nix
NSIS
Objective-C
OCaml
OpenCL
Oz
PARI/GP
Parser
Pascal
Perl
PHP
PHP Extras
PL/SQL
PowerShell
Processing
Prolog
.properties
Protocol Buffers
Pug
Puppet
Pure
Python
Q (kdb+ database)
Qore
R
React JSX
React TSX
Ren'py
Reason
reST (reStructuredText)
Rip
Roboconf
Ruby
Rust
SAS
Sass (Sass)
Sass (Scss)
Scala
Scheme
Smalltalk
Smarty
SQL
Soy (Closure Template)
Stylus
Swift
TAP
Tcl
Textile
Template Toolkit 2
Twig
TypeScript
VB.Net
Velocity
Verilog
VHDL
vim
Visual Basic
WebAssembly
Wiki markup
Xeora
Xojo (REALbasic)
XQuery
YAML
HTML
Paste Expiration :
[Optional]
Never
Self Destroy
10 Minutes
1 Hour
1 Day
1 Week
2 Weeks
1 Month
6 Months
1 Year
Paste Status :
[Optional]
Public
Unlisted
Private (members only)
Password :
[Optional]
Description:
[Optional]
Tags:
[Optional]
Encrypt Paste
(
?
)
Create New Paste
You are currently not logged in, this means you can not edit or delete anything you paste.
Sign Up
or
Login
Site Languages
×
English
Tiếng Việt
भारत