Yam Code
Sign up
Login
New paste
Home
Trending
Archive
English
English
Tiếng Việt
भारत
Sign up
Login
New Paste
Browse
https://www.selleckchem.com/btk.html These results unravel mechanistic insights that are essential for the design of lubricating systems based on strongly hydrated NPs.For energy-saving purposes, the pursuit of ultrahigh permeance nanofiltration membranes without sacrificing selectivity is never-ending in desalination, wastewater treatment, and industrial product separation. Herein, we reported a novel facile route to engineer a highly porous and superhydrophilic nanofibrous substrate to mediate the interfacial polymerization between trimesoyl chloride and piperazine, generating an ultrathin PA active layer (∼13 nm) with a hierarchical crumpled surface. The wet laying process and subsequent plasma treatment endowed a rougher and more hydrophilic surface for ethylene vinyl alcohol copolymer (EVOH) nanofibers in the thin compact nanofibrous scaffold (∼9 μm) with a mean pore size of 210 nm, radically different from the nanofibrous membrane by other methods. Nanofibrous scaffold with these features provide abundant thin-thick alternative continuous water layers between nanofibers and organic phase, facilitating the formation of the abovementioned PA layer. As a result, an ultrahigh permeance of 42.25 L·m-2 h-1 bar-1 and a reasonably high rejection of 95.97% to 1000 ppm Na2SO4 feed solution were obtained, superior to most state-of-the-art NF membranes reported so far. Our work provides an easy and scalable method to fabricate advanced PA NF membranes with outstanding performance, highlighting its great potential in liquid separation.Dynamic light scattering (DLS) experiments and equilibrium molecular dynamics (EMD) simulations were performed in the saturated liquid phase of the binary mixture of 1-hexyl-3-methylimidazolium bis(trifluormethylsulfonyl)imide ([HMIM][NTf2]) and carbon dioxide (CO2) to access the Fick diffusion coefficient (D11). The investigations were performed within or close to saturation conditions at temperatures between (298.15 and 348.15) K and CO2 mo
Paste Settings
Paste Title :
[Optional]
Paste Folder :
[Optional]
Select
Syntax Highlighting :
[Optional]
Select
Markup
CSS
JavaScript
Bash
C
C#
C++
Java
JSON
Lua
Plaintext
C-like
ABAP
ActionScript
Ada
Apache Configuration
APL
AppleScript
Arduino
ARFF
AsciiDoc
6502 Assembly
ASP.NET (C#)
AutoHotKey
AutoIt
Basic
Batch
Bison
Brainfuck
Bro
CoffeeScript
Clojure
Crystal
Content-Security-Policy
CSS Extras
D
Dart
Diff
Django/Jinja2
Docker
Eiffel
Elixir
Elm
ERB
Erlang
F#
Flow
Fortran
GEDCOM
Gherkin
Git
GLSL
GameMaker Language
Go
GraphQL
Groovy
Haml
Handlebars
Haskell
Haxe
HTTP
HTTP Public-Key-Pins
HTTP Strict-Transport-Security
IchigoJam
Icon
Inform 7
INI
IO
J
Jolie
Julia
Keyman
Kotlin
LaTeX
Less
Liquid
Lisp
LiveScript
LOLCODE
Makefile
Markdown
Markup templating
MATLAB
MEL
Mizar
Monkey
N4JS
NASM
nginx
Nim
Nix
NSIS
Objective-C
OCaml
OpenCL
Oz
PARI/GP
Parser
Pascal
Perl
PHP
PHP Extras
PL/SQL
PowerShell
Processing
Prolog
.properties
Protocol Buffers
Pug
Puppet
Pure
Python
Q (kdb+ database)
Qore
R
React JSX
React TSX
Ren'py
Reason
reST (reStructuredText)
Rip
Roboconf
Ruby
Rust
SAS
Sass (Sass)
Sass (Scss)
Scala
Scheme
Smalltalk
Smarty
SQL
Soy (Closure Template)
Stylus
Swift
TAP
Tcl
Textile
Template Toolkit 2
Twig
TypeScript
VB.Net
Velocity
Verilog
VHDL
vim
Visual Basic
WebAssembly
Wiki markup
Xeora
Xojo (REALbasic)
XQuery
YAML
HTML
Paste Expiration :
[Optional]
Never
Self Destroy
10 Minutes
1 Hour
1 Day
1 Week
2 Weeks
1 Month
6 Months
1 Year
Paste Status :
[Optional]
Public
Unlisted
Private (members only)
Password :
[Optional]
Description:
[Optional]
Tags:
[Optional]
Encrypt Paste
(
?
)
Create New Paste
You are currently not logged in, this means you can not edit or delete anything you paste.
Sign Up
or
Login
Site Languages
×
English
Tiếng Việt
भारत