Yam Code
Sign up
Login
New paste
Home
Trending
Archive
English
English
Tiếng Việt
भारत
Sign up
Login
New Paste
Browse
https://www.selleckchem.com/products/grl0617.html Corrosion process was investigated of depleted uranium (DU) ammunition fragments buried for three years in aerobic soils continuously irrigated with water. The continuing corrosion process was triggered through formation of soluble uranyl oxyhydrate phases such as metaschoepite and becquerelite, which were identified by micro-Raman and X-ray diffraction spectroscopy. The soil was not amended by phosphates and, therefore, no uranyl phosphates were found as corrosion products on the DU surfaces by X-ray photoelectron spectroscopy. A speciation modelling at high temporal sequence (chronospeciation approach) indicated that the abundant Fe oxyhydroxides in the soil immobilized the U(IV) released through DU corrosion. During the first two years, therefore, only 3 g of DU had been corroded. However, the degree of this immobilization was found to be controlled by the amount of dissolved inorganic and organic carbon (DIC and DOC) in the soil pore water providing for U(VI) complexation competing with surface complexation by the Fe hydroxides. The chronospeciation approach applied is useful to improve our understanding and ability to predict the long-term fate of U(VI) and the mechanisms controlling U(VI) mobility in soil contaminated with DU shells.Extensive research has been conducted investigating the effects of ionizing radiation on biological systems, including specific focus at low doses. However, at the surface of the planet, there is the ubiquitous presence of ionizing natural background radiation (NBR) from sources both terrestrial and cosmic. We are currently conducting radiobiological experiments examining the impacts of sub-NBR exposure within SNOLAB. SNOLAB is a deep underground research laboratory in Sudbury, Ontario, Canada located 2 km beneath the surface of the planet. At this depth, significant shielding of NBR components is provided by the rock overburden. Here, we describe a Specialized Tissue Culture Incuba
Paste Settings
Paste Title :
[Optional]
Paste Folder :
[Optional]
Select
Syntax Highlighting :
[Optional]
Select
Markup
CSS
JavaScript
Bash
C
C#
C++
Java
JSON
Lua
Plaintext
C-like
ABAP
ActionScript
Ada
Apache Configuration
APL
AppleScript
Arduino
ARFF
AsciiDoc
6502 Assembly
ASP.NET (C#)
AutoHotKey
AutoIt
Basic
Batch
Bison
Brainfuck
Bro
CoffeeScript
Clojure
Crystal
Content-Security-Policy
CSS Extras
D
Dart
Diff
Django/Jinja2
Docker
Eiffel
Elixir
Elm
ERB
Erlang
F#
Flow
Fortran
GEDCOM
Gherkin
Git
GLSL
GameMaker Language
Go
GraphQL
Groovy
Haml
Handlebars
Haskell
Haxe
HTTP
HTTP Public-Key-Pins
HTTP Strict-Transport-Security
IchigoJam
Icon
Inform 7
INI
IO
J
Jolie
Julia
Keyman
Kotlin
LaTeX
Less
Liquid
Lisp
LiveScript
LOLCODE
Makefile
Markdown
Markup templating
MATLAB
MEL
Mizar
Monkey
N4JS
NASM
nginx
Nim
Nix
NSIS
Objective-C
OCaml
OpenCL
Oz
PARI/GP
Parser
Pascal
Perl
PHP
PHP Extras
PL/SQL
PowerShell
Processing
Prolog
.properties
Protocol Buffers
Pug
Puppet
Pure
Python
Q (kdb+ database)
Qore
R
React JSX
React TSX
Ren'py
Reason
reST (reStructuredText)
Rip
Roboconf
Ruby
Rust
SAS
Sass (Sass)
Sass (Scss)
Scala
Scheme
Smalltalk
Smarty
SQL
Soy (Closure Template)
Stylus
Swift
TAP
Tcl
Textile
Template Toolkit 2
Twig
TypeScript
VB.Net
Velocity
Verilog
VHDL
vim
Visual Basic
WebAssembly
Wiki markup
Xeora
Xojo (REALbasic)
XQuery
YAML
HTML
Paste Expiration :
[Optional]
Never
Self Destroy
10 Minutes
1 Hour
1 Day
1 Week
2 Weeks
1 Month
6 Months
1 Year
Paste Status :
[Optional]
Public
Unlisted
Private (members only)
Password :
[Optional]
Description:
[Optional]
Tags:
[Optional]
Encrypt Paste
(
?
)
Create New Paste
You are currently not logged in, this means you can not edit or delete anything you paste.
Sign Up
or
Login
Site Languages
×
English
Tiếng Việt
भारत