Yam Code
Sign up
Login
New paste
Home
Trending
Archive
English
English
Tiếng Việt
भारत
Sign up
Login
New Paste
Browse
https://www.selleckchem.com/products/ro-20-1724.html The combination of catalytic aqueous hydrochloric acid (HCl) and N-bromosuccinimide (NBS) generated electrophilic bromine monochloride (BrCl), which readily induced spiroannulation of 2-alkynolyl anilides (n = 1-3) to form gem-dibromospirocyclic benzo[d][1,3]oxazines in up to 92% yield. The reaction occurred under mild and metal-free conditions using EtOAc as a green solvent. The resulted spirocyclic products contained benzo[d][1,3]oxazine, which was useful both as a pharmacophore and synthetic precursor. In addition, the current protocol allowed to effortlessly introduce the sp3-gem-dibromide carbon adjacent to the sterically demanding spiroketal center. These spiroheterocycles (n = 1) were shown to be synthetically versatile and conveniently maneuvered. Base-promoted debrominative aromatization of these spirocycles unmasked rare and synthetically useful 2-aryl-3-bromofurans in mostly excellent yields. These 3-bromofurans were well-suited substrates for intramolecular Ullmann C-N bond coupling to construct difficult-to-prepare 4H-furo[3,2-b]indoles. Additionally, the current protocol was flexible and adaptable to preparing the gem-dichloride variants.The "fixed diagonal matrices" (FDM) dispersion formalism [Kooi, D. P.; et al. J. Phys. Chem. Lett. 2019, 10, 1537] is based on a supramolecular wave function constrained to leave the diagonal of the many-body density matrix of each monomer unchanged, reducing dispersion to a balance between kinetic energy and monomer-monomer interaction. The corresponding variational optimization leads to expressions for the dispersion energy in terms of the ground-state pair densities of the isolated monomers only, providing a framework to build new approximations without the need for polarizabilities or virtual orbitals. Despite the underlying microscopic real space mechanism being incorrect, as in the exact case there is density relaxation, the formalism has been shown to give ext
Paste Settings
Paste Title :
[Optional]
Paste Folder :
[Optional]
Select
Syntax Highlighting :
[Optional]
Select
Markup
CSS
JavaScript
Bash
C
C#
C++
Java
JSON
Lua
Plaintext
C-like
ABAP
ActionScript
Ada
Apache Configuration
APL
AppleScript
Arduino
ARFF
AsciiDoc
6502 Assembly
ASP.NET (C#)
AutoHotKey
AutoIt
Basic
Batch
Bison
Brainfuck
Bro
CoffeeScript
Clojure
Crystal
Content-Security-Policy
CSS Extras
D
Dart
Diff
Django/Jinja2
Docker
Eiffel
Elixir
Elm
ERB
Erlang
F#
Flow
Fortran
GEDCOM
Gherkin
Git
GLSL
GameMaker Language
Go
GraphQL
Groovy
Haml
Handlebars
Haskell
Haxe
HTTP
HTTP Public-Key-Pins
HTTP Strict-Transport-Security
IchigoJam
Icon
Inform 7
INI
IO
J
Jolie
Julia
Keyman
Kotlin
LaTeX
Less
Liquid
Lisp
LiveScript
LOLCODE
Makefile
Markdown
Markup templating
MATLAB
MEL
Mizar
Monkey
N4JS
NASM
nginx
Nim
Nix
NSIS
Objective-C
OCaml
OpenCL
Oz
PARI/GP
Parser
Pascal
Perl
PHP
PHP Extras
PL/SQL
PowerShell
Processing
Prolog
.properties
Protocol Buffers
Pug
Puppet
Pure
Python
Q (kdb+ database)
Qore
R
React JSX
React TSX
Ren'py
Reason
reST (reStructuredText)
Rip
Roboconf
Ruby
Rust
SAS
Sass (Sass)
Sass (Scss)
Scala
Scheme
Smalltalk
Smarty
SQL
Soy (Closure Template)
Stylus
Swift
TAP
Tcl
Textile
Template Toolkit 2
Twig
TypeScript
VB.Net
Velocity
Verilog
VHDL
vim
Visual Basic
WebAssembly
Wiki markup
Xeora
Xojo (REALbasic)
XQuery
YAML
HTML
Paste Expiration :
[Optional]
Never
Self Destroy
10 Minutes
1 Hour
1 Day
1 Week
2 Weeks
1 Month
6 Months
1 Year
Paste Status :
[Optional]
Public
Unlisted
Private (members only)
Password :
[Optional]
Description:
[Optional]
Tags:
[Optional]
Encrypt Paste
(
?
)
Create New Paste
You are currently not logged in, this means you can not edit or delete anything you paste.
Sign Up
or
Login
Site Languages
×
English
Tiếng Việt
भारत