Yam Code
Sign up
Login
New paste
Home
Trending
Archive
English
English
Tiếng Việt
भारत
Sign up
Login
New Paste
Browse
https://www.selleckchem.com/products/danirixin.html Increasing the drug tumor-specific accumulation and controlling their release is considered one of the most effective ways to increase the efficacy of drugs. Here, we developed a vesicle system that can target hepatoma and release drugs rapidly within tumor cells. This non-ionic surfactant vesicle is biodegradable. Galactosylated stearate has been used to glycosylate the vesicles to achieve liver targeting; replacement of a portion (CholCHEMS = 11) of cholesterol by cholesteryl hemisuccinate (CHEMS) allows for a rapid release of drugs in an acidic environment. In vitro release experiments confirmed that galactose-modified pH-sensitive niosomes loaded with tanshinone IIA had excellent drug release performance in acid medium. In vitro experiments using ovarian cancer cells (A2780), colon cancer cells (HCT8), and hepatoma cell (Huh7, HepG2) confirmed that the preparation had specific targeting ability to hepatoma cells compared with free drugs, and this ability was dependent on the galactose content. Furthermore, the preparation also had a more substantial inhibitory effect on tumor cells, and subsequent apoptosis assays and cell cycle analyses further confirmed its enhanced anti-tumor effect. Results of pharmacokinetic experiments confirmed that the vesicle system could significantly extend the blood circulation time of tanshinone IIA, and the larger area under the curve indicated that the preparation had a better drug effect. Thus, the results of biodistribution experiments confirmed the in vivo liver targeting ability of this preparation. Niosomes designed in this manner are expected to be a safe and effective drug delivery system for liver cancer therapy. Cardiovascular disease (CVD) is the leading cause of death among individuals with non-alcoholic fatty liver disease (NAFLD). Recently, NAFLD was renamed metabolic-associated fatty liver disease (MAFLD). This study aimed to compare cardiovascular risk (CVR) and CV
Paste Settings
Paste Title :
[Optional]
Paste Folder :
[Optional]
Select
Syntax Highlighting :
[Optional]
Select
Markup
CSS
JavaScript
Bash
C
C#
C++
Java
JSON
Lua
Plaintext
C-like
ABAP
ActionScript
Ada
Apache Configuration
APL
AppleScript
Arduino
ARFF
AsciiDoc
6502 Assembly
ASP.NET (C#)
AutoHotKey
AutoIt
Basic
Batch
Bison
Brainfuck
Bro
CoffeeScript
Clojure
Crystal
Content-Security-Policy
CSS Extras
D
Dart
Diff
Django/Jinja2
Docker
Eiffel
Elixir
Elm
ERB
Erlang
F#
Flow
Fortran
GEDCOM
Gherkin
Git
GLSL
GameMaker Language
Go
GraphQL
Groovy
Haml
Handlebars
Haskell
Haxe
HTTP
HTTP Public-Key-Pins
HTTP Strict-Transport-Security
IchigoJam
Icon
Inform 7
INI
IO
J
Jolie
Julia
Keyman
Kotlin
LaTeX
Less
Liquid
Lisp
LiveScript
LOLCODE
Makefile
Markdown
Markup templating
MATLAB
MEL
Mizar
Monkey
N4JS
NASM
nginx
Nim
Nix
NSIS
Objective-C
OCaml
OpenCL
Oz
PARI/GP
Parser
Pascal
Perl
PHP
PHP Extras
PL/SQL
PowerShell
Processing
Prolog
.properties
Protocol Buffers
Pug
Puppet
Pure
Python
Q (kdb+ database)
Qore
R
React JSX
React TSX
Ren'py
Reason
reST (reStructuredText)
Rip
Roboconf
Ruby
Rust
SAS
Sass (Sass)
Sass (Scss)
Scala
Scheme
Smalltalk
Smarty
SQL
Soy (Closure Template)
Stylus
Swift
TAP
Tcl
Textile
Template Toolkit 2
Twig
TypeScript
VB.Net
Velocity
Verilog
VHDL
vim
Visual Basic
WebAssembly
Wiki markup
Xeora
Xojo (REALbasic)
XQuery
YAML
HTML
Paste Expiration :
[Optional]
Never
Self Destroy
10 Minutes
1 Hour
1 Day
1 Week
2 Weeks
1 Month
6 Months
1 Year
Paste Status :
[Optional]
Public
Unlisted
Private (members only)
Password :
[Optional]
Description:
[Optional]
Tags:
[Optional]
Encrypt Paste
(
?
)
Create New Paste
You are currently not logged in, this means you can not edit or delete anything you paste.
Sign Up
or
Login
Site Languages
×
English
Tiếng Việt
भारत