Yam Code
Sign up
Login
New paste
Home
Trending
Archive
English
English
Tiếng Việt
भारत
Sign up
Login
New Paste
Browse
https://www.selleckchem.com/products/danicopan.html OBJECTIVE To evaluate the performance of machine learning (ML) algorithms and to compare them to logistic regression for the prediction of risk of cardiovascular diseases (CVD), chronic kidney disease (CKD), diabetes (DM), and hypertension (HTN) and in a prospective cohort study using simple clinical predictors. STUDY DESIGN AND SETTING We conducted analyses in a population-based cohort study in Asian adults (n=6,762). Five different ML models were considered single-hidden-layer neural network, support vector machine, random forest, gradient boosting machine and k-nearest neighbour, and were compared to standard logistic regression. RESULTS The incidences at 6-year of CVD, CKD, DM, and HTN cases were 4.0%, 7.0%, 9.2%, and 34.6%, respectively. Logistic regression reached the highest AUC for CKD (0.905 [0.88, 0.93]) and DM (0.768 [0.73, 0.81]) predictions. For CVD and HTN, the best models were neural network (0.753 [0.70, 0.81]) and support vector machine (0.780 [0.747, 0.812]), respectively. However, the differences with logistic regression were small (less than 1%) and non-significant. Logistic regression, gradient boosting machine and neural network were systematically ranked among the best models. CONCLUSION Logistic regression yields as good performance as ML models to predict the risk of major chronic diseases with low incidence and simple clinical predictors. OBJECTIVE Help educators address misconceptions about P-values and provide a tool that can be used to teach a more contemporary interpretation. DESIGN and Setting A scripted tutorial utilizing problem-based learning and a diagnostic test analogy to deconstruct the misunderstandings about P-values and develop a more Bayesian approach to study interpretation. RESULTS A diagnostic test analogy is an effective teaching tool. Learners' understanding of Bayes' theorem in diagnostic testing can be used as a bridge to the realization that the pre-study probabilit
Paste Settings
Paste Title :
[Optional]
Paste Folder :
[Optional]
Select
Syntax Highlighting :
[Optional]
Select
Markup
CSS
JavaScript
Bash
C
C#
C++
Java
JSON
Lua
Plaintext
C-like
ABAP
ActionScript
Ada
Apache Configuration
APL
AppleScript
Arduino
ARFF
AsciiDoc
6502 Assembly
ASP.NET (C#)
AutoHotKey
AutoIt
Basic
Batch
Bison
Brainfuck
Bro
CoffeeScript
Clojure
Crystal
Content-Security-Policy
CSS Extras
D
Dart
Diff
Django/Jinja2
Docker
Eiffel
Elixir
Elm
ERB
Erlang
F#
Flow
Fortran
GEDCOM
Gherkin
Git
GLSL
GameMaker Language
Go
GraphQL
Groovy
Haml
Handlebars
Haskell
Haxe
HTTP
HTTP Public-Key-Pins
HTTP Strict-Transport-Security
IchigoJam
Icon
Inform 7
INI
IO
J
Jolie
Julia
Keyman
Kotlin
LaTeX
Less
Liquid
Lisp
LiveScript
LOLCODE
Makefile
Markdown
Markup templating
MATLAB
MEL
Mizar
Monkey
N4JS
NASM
nginx
Nim
Nix
NSIS
Objective-C
OCaml
OpenCL
Oz
PARI/GP
Parser
Pascal
Perl
PHP
PHP Extras
PL/SQL
PowerShell
Processing
Prolog
.properties
Protocol Buffers
Pug
Puppet
Pure
Python
Q (kdb+ database)
Qore
R
React JSX
React TSX
Ren'py
Reason
reST (reStructuredText)
Rip
Roboconf
Ruby
Rust
SAS
Sass (Sass)
Sass (Scss)
Scala
Scheme
Smalltalk
Smarty
SQL
Soy (Closure Template)
Stylus
Swift
TAP
Tcl
Textile
Template Toolkit 2
Twig
TypeScript
VB.Net
Velocity
Verilog
VHDL
vim
Visual Basic
WebAssembly
Wiki markup
Xeora
Xojo (REALbasic)
XQuery
YAML
HTML
Paste Expiration :
[Optional]
Never
Self Destroy
10 Minutes
1 Hour
1 Day
1 Week
2 Weeks
1 Month
6 Months
1 Year
Paste Status :
[Optional]
Public
Unlisted
Private (members only)
Password :
[Optional]
Description:
[Optional]
Tags:
[Optional]
Encrypt Paste
(
?
)
Create New Paste
You are currently not logged in, this means you can not edit or delete anything you paste.
Sign Up
or
Login
Site Languages
×
English
Tiếng Việt
भारत