Yam Code
Sign up
Login
New paste
Home
Trending
Archive
English
English
Tiếng Việt
भारत
Sign up
Login
New Paste
Browse
import numpy as np # X = (Số giờ học, giờ ngủ), y = điểm số tương ứng xAll = np.array(([2, 9], [1, 5], [3, 6], [5, 10]), dtype=float) # input data y = np.array(([92], [86], [89]), dtype=float) # output inp = np.split(xAll,[3])[1] # units xAll = xAll / np.amax(xAll, axis=0) y = y / 100 # split data X = np.split(xAll, [3])[0] # Dữ liệu training xPredicted = np.split(xAll, [3])[1] # dữ liệu cần dự đoán y = np.array(([92], [86], [89]), dtype=float) y = y / 100 class Neural_Network(object): def __init__(self): # parameters self.inputSize = 2 self.outputSize = 1 self.hiddenSize = 3 # weights self.W1 = np.random.randn(self.inputSize, self.hiddenSize) # (3x2) weight matrix from input to hidden layer self.W2 = np.random.randn(self.hiddenSize, self.outputSize) # (3x1) weight matrix from hidden to output layer def forward(self, X): # forward propagation through our network self.z = np.dot(X, self.W1) # dot product of X (input) and first set of 3x2 weights self.z2 = self.sigmoid(self.z) # activation function self.z3 = np.dot(self.z2, self.W2) # dot product of hidden layer (z2) and second set of 3x1 weights o = self.sigmoid(self.z3) # final activation function return o def sigmoid(self, s): # activation function return 1 / (1 + np.exp(-s)) def sigmoidPrime(self, s): # derivative of sigmoid return s * (1 - s) def backward(self, X, y, o): # backward propagate through the network self.o_error = y - o # error in output self.o_delta = self.o_error * self.sigmoidPrime(o) # applying derivative of sigmoid to error self.z2_error = self.o_delta.dot( self.W2.T) # z2 error: how much our hidden layer weights contributed to output error self.z2_delta = self.z2_error * self.sigmoidPrime(self.z2) # applying derivative of sigmoid to z2 error self.W1 += X.T.dot(self.z2_delta) # adjusting first set (input --> hidden) weights self.W2 += self.z2.T.dot(self.o_delta) # adjusting second set (hidden --> output) weights def train(self, X, y): o = self.forward(X) self.backward(X, y, o) def predict(self): print("Predicted data based on trained weights: ") print("Input : " + str(inp)) print("Input (scaled): " + str(xPredicted)) print("Output: " + str(self.forward(xPredicted) * 100)) NN = Neural_Network() for i in range(10001): # trains the NN 1,000 times print("# " + str(i) + "\n") print("Input (scaled): \n" + str(X)) print("Actual Output: \n" + str(y)) print("Predicted Output: \n" + str(NN.forward(X))) print("Loss: \n" + str(np.mean(np.square(y - NN.forward(X))))) # mean sum squared loss print("\n") NN.train(X, y) NN.predict()
Paste Settings
Paste Title :
[Optional]
Paste Folder :
[Optional]
Select
Syntax Highlighting :
[Optional]
Select
Markup
CSS
JavaScript
Bash
C
C#
C++
Java
JSON
Lua
Plaintext
C-like
ABAP
ActionScript
Ada
Apache Configuration
APL
AppleScript
Arduino
ARFF
AsciiDoc
6502 Assembly
ASP.NET (C#)
AutoHotKey
AutoIt
Basic
Batch
Bison
Brainfuck
Bro
CoffeeScript
Clojure
Crystal
Content-Security-Policy
CSS Extras
D
Dart
Diff
Django/Jinja2
Docker
Eiffel
Elixir
Elm
ERB
Erlang
F#
Flow
Fortran
GEDCOM
Gherkin
Git
GLSL
GameMaker Language
Go
GraphQL
Groovy
Haml
Handlebars
Haskell
Haxe
HTTP
HTTP Public-Key-Pins
HTTP Strict-Transport-Security
IchigoJam
Icon
Inform 7
INI
IO
J
Jolie
Julia
Keyman
Kotlin
LaTeX
Less
Liquid
Lisp
LiveScript
LOLCODE
Makefile
Markdown
Markup templating
MATLAB
MEL
Mizar
Monkey
N4JS
NASM
nginx
Nim
Nix
NSIS
Objective-C
OCaml
OpenCL
Oz
PARI/GP
Parser
Pascal
Perl
PHP
PHP Extras
PL/SQL
PowerShell
Processing
Prolog
.properties
Protocol Buffers
Pug
Puppet
Pure
Python
Q (kdb+ database)
Qore
R
React JSX
React TSX
Ren'py
Reason
reST (reStructuredText)
Rip
Roboconf
Ruby
Rust
SAS
Sass (Sass)
Sass (Scss)
Scala
Scheme
Smalltalk
Smarty
SQL
Soy (Closure Template)
Stylus
Swift
TAP
Tcl
Textile
Template Toolkit 2
Twig
TypeScript
VB.Net
Velocity
Verilog
VHDL
vim
Visual Basic
WebAssembly
Wiki markup
Xeora
Xojo (REALbasic)
XQuery
YAML
HTML
Paste Expiration :
[Optional]
Never
Self Destroy
10 Minutes
1 Hour
1 Day
1 Week
2 Weeks
1 Month
6 Months
1 Year
Paste Status :
[Optional]
Public
Unlisted
Private (members only)
Password :
[Optional]
Description:
[Optional]
Tags:
[Optional]
Encrypt Paste
(
?
)
Create New Paste
You are currently not logged in, this means you can not edit or delete anything you paste.
Sign Up
or
Login
Site Languages
×
English
Tiếng Việt
भारत