The vascular network is a central component of the organ-on-a-chip system to build a 3D physiological microenvironment with controlled physical and biochemical variables. Inspired by ubiquitous biological systems such as leaf venation and circulatory systems, a fabrication strategy is devised to develop a biomimetic vascular system integrated with freely designed chambers, which function as niches for chamber-specific vascularized organs. As a proof of concept, a human-on-leaf-chip system with biomimetic multiscale vasculature systems connecting the self-assembled 3D vasculatures in chambers is fabricated, mimicking the in vivo complex architectures of the human cardiovascular system connecting vascularized organs. Besides, two types of vascularized organs are built independently within the two halves of the system to verify its feasibility for conducting comparative experiments for organ-specific metastasis studies in a single chip. Successful culturing of human hepatoma G2 cells (HepG2s) and mesenchymal stem cells (MSCs) with human umbilical vein endothelial cells (HUVECs) shows good vasculature formation, and organ-specific metastasis is simulated through perfusion of pancreatic cancer cells and shows distinct cancer encapsulation by MSCs, which is absent in HepG2s. https://www.selleckchem.com/products/Erlotinib-Hydrochloride.html Given good culture efficacy, study design flexibility, and ease of modification, these results show that the bioinspired human-on-leaf-chip possesses great potential in comparative and metastasis studies while retaining organ-to-organ crosstalk. © 2020 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.Magnetic-plasmonic nanoparticles have received considerable attention for widespread applications. These nanoparticles (NPs) exhibiting surface-enhanced Raman scattering (SERS) activities are developed due to their potential in bio-sensing applicable in non-destructive and sensitive analysis with target-specific separation. However, it is challenging to synthesize these NPs that simultaneously exhibit low remanence, maximized magnetic content, plasmonic coverage with abundant hotspots, and structural uniformity. Here, a method that involves the conjugation of a magnetic template with gold seeds via chemical binding and seed-mediated growth is proposed, with the objective of obtaining plasmonic nanostructures with abundant hotspots on a magnetic template. To obtain a clean surface for directly functionalizing ligands and enhancing the Raman intensity, an additional growth step of gold (Au) and/or silver (Ag) atoms is proposed after modifying the Raman molecules on the as-prepared magnetic-plasmonic nanoparticles. Importantly, one-sided silver growth occurred in an environment where gold facets are blocked by Raman molecules; otherwise, the gold growth is layer-by-layer. Moreover, simultaneous reduction by gold and silver ions allowed for the formation of a uniform bimetallic layer. The enhancement factor of the nanoparticles with a bimetallic layer is approximately 107 . The SERS probes functionalized cyclic peptides are employed for targeted cancer-cell imaging and separation. © 2020 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.Nearly inexhaustible sodium sources on earth make sodium ion batteries (SIBs) the best candidate for large-scale energy storage. However, the main obstacles faced by SIBs are the low rate performance and poor cycle stability caused by the large size of Na+ ions. Herein, a universal strategy for synthesizing amorphous metals encapsulated into amorphous B, N co-doped carbon (a-M@a-BCN; M = Co, Ni, Mn) nanotubes by metal cation-assisted carbonization is explored. The methodology allows tailoring the structures (e.g., length, wall thickness, and metals doping) of a-M@a-BCN nannotubes at the molecular level. Furthermore, the amorphous metal sulfide encapsulated into a-BCN (a-MSx @a-BCN; MSx CoS, Ni3 S2 , MnS) nanotubes are obtained by one-step sulfidation process. The a-M@a-BCN and a-MSx @a-BCN possess the larger interlayer spacing (0.40 nm) amorphous carbon nanotube rich in heteroatoms active sites, making them exhibit excellent Na+ ions diffusion kinetics and capacitive storage behavior. As SIBs anodes, they show high capacity, excellent rate performance, and long cycle stability. © 2020 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.Antioxidant nanoparticles have recently gained tremendous attention for their enormous potential in biomedicine. However, discrepant reports of either medical benefits or toxicity, and lack of reproducibility of many studies, generate uncertainties delaying their effective implementation. Herein, the case of cerium oxide is considered, a well-known catalyst in the petrochemistry industry and one of the first antioxidant nanoparticles proposed for medicine. Like other nanoparticles, it is now described as a promising therapeutic alternative, now as threatening to health. Sources of these discrepancies and how this analysis helps to overcome contradictions found for other nanoparticles are summarized and discussed. For the context of this analysis, what has been reported in the liver is reviewed, where many diseases are related to oxidative stress. Since well-dispersed nanoparticles passively accumulate in liver, it represents a major testing field for the study of new nanomedicines and their clinical translation. Even more, many contradictory works have reported in liver either cerium-oxide-associated toxicity or protection against oxidative stress and inflammation. Based on this, finally, the intention is to propose solutions to design improved nanoparticles that will work more precisely in medicine and safely in society. © 2020 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.Iron sulfides with high theoretical capacity and low cost have attracted extensive attention as anode materials for sodium ion batteries. However, the inferior electrical conductivity and devastating volume change and interface instability have largely hindered their practical electrochemical properties. Here, ultrathin amorphous TiO2 layer is constructed on the surface of a metal-organic framework derived porous Fe7 S8 /C electrode via a facile atomic layer deposition strategy. By virtue of the porous structure and enhanced conductivity of the Fe7 S8 /C, the electroactive TiO2 layer is expected to effectively improve the electrode interface stability and structure integrity of the electrode. As a result, the TiO2 -modified Fe7 S8 /C anode exhibits significant performance improvement for sodium-ion batteries. The optimal TiO2 -modified Fe7 S8 /C electrode delivers reversible capacity of 423.3 mA h g-1 after 200 cycles with high capacity retention of 75.3% at 0.2 C. Meanwhile, the TiO2 coating is conducive to construct favorable solid electrolyte interphase, leading to much enhanced initial Coulombic efficiency from 66.