Background Low levels of physical activity, sedentary behaviour and mental health problems are issues that have received considerable attention in the last decade. The aim of this systematic review and meta-analysis was to investigate effects of interventions targeting school-related physical activity or sedentary behaviour on mental health in children and adolescents and to identify the features of effective interventions. Methods Scientific articles published between January 2009 and October 2019 fulfilling the following criteria were included general populations of children and adolescents between age 4 and 19, all types of school-related efforts to promote physical activity or reduce sedentary behaviour. Study selection, data extraction and quality assessment were done by at least two authors independently of each other. Data were analysed with a random effects meta-analysis and by narrative moderator analyses. Results The literature search resulted in 10265 unique articles. Thirty-one articles, describinaution. Future studies should report on implementation factors and more clearly describe the activities of the control group and whether the activity is added to or replacing ordinary physical education lessons in order to aid interpretation of results. Trial registration PROSPERO, CRD42018086757.A nanocomposite based on nanofibrillar cellulose (NFC) coated with gold-silver (core-shell) nanoparticles (Au@Ag NPs) was developed as a novel surface-enhanced Raman spectroscopy (SERS) substrate. SERS performance of NFC/Au@Ag NP nanocomposite was tested by 4-mercaptobenzoic acid. The cellulose nanofibril network was a suitable platform that allowed Au@Ag NPs to be evenly distributed and stabilized over the substrate, providing more SERS hotspots for the measurement. Two pesticides, thiram and paraquat, were successfully detected either individually or as a mixture in lettuce by SERS coupled with the nanocomposite. Strong Raman scattering signals for both thiram and paraquat were obtained within a Raman shift range of 400-2000 cm-1 and a Raman intensity ~ 8 times higher than those acquired by NFC/Au NP nanocomposite. Characteristic peaks were clearly observable in all SERS spectra even at a low concentration of 10 μg/L of pesticides. https://www.selleckchem.com/products/FK-506-(Tacrolimus).html Limit of detection values of 71 and 46 μg/L were obtained for thiram and paraquat, respectively. Satisfactory SERS performance, reproducibility, and sensitivity of NFC/Au@Ag NP nanocomposite validate its applicability for real-world analysis to monitor pesticides and other contaminants in complex food matrices within a short acquisition time. Graphical abstract.Purpose of review Evidence suggests that the microbiome of the skin, gastrointestinal tract, and airway contribute to health and disease. As we learn more about the role that the microbiota plays in allergic disease development, we can develop therapeutics to alter this pathway. Recent findings Epidemiologic studies reveal that an association exists between environmental exposures, which alter the microbiota, and developing atopic dermatitis, food allergy, and/or asthma. In fact, samples from the skin, gastrointestinal tract, and respiratory tract reveal distinct microbiotas compared with healthy controls, with microbial changes (dysbiosis) often preceding the development of allergic disease. Mechanistic studies have confirmed that microbes can either promote skin, gut, and airway health by strengthening barrier integrity, or they can alter skin integrity and damage gut and airway epithelium. In this review, we will discuss recent studies that reveal the link between the microbiota and immune development, and we will discuss ways to influence these changes.The COVID-19 pandemic is influencing methods of healthcare delivery. In this short review, we discuss the evidence for remote healthcare delivery in the context of osteoporosis. Introduction The COVID-19 pandemic has undoubtedly had, and will continue to have, a significant impact on the lives of people living with, and at risk of, osteoporosis and those caring for them. With osteoporosis outpatient and Fracture Liaison Services on pause, healthcare organisations have already moved to delivering new and follow-up consultations remotely, where staffing permits, by telephone or video. Methods In this review, we consider different models of remote care delivery, the evidence for their use, and the possible implications of COVID-19 on osteoporosis services. Results Telemedicine is a global term used to describe any use of telecommunication systems to deliver healthcare from a distance and encompasses a range of different scenarios from remote clinical data transfer to remote clinician-patient interactions. Across a range of conditions and contexts, there remains unclear evidence on the acceptability of telemedicine and the effect on healthcare costs. Within the context of osteoporosis management, there is some limited evidence to suggest telemedicine approaches are acceptable to patients but unclear evidence on whether telemedicine approaches support informed drug adherence. Gaps in the evidence pertain to the acceptability and benefits of using telemedicine in populations with hearing, cognitive, or visual impairments and in those with limited health literacy. Conclusion There is an urgent need for further health service evaluation and research to address the impact of remote healthcare delivery during COVID-19 outbreak on patient care, and in the longer term, to identify acceptability and cost- and clinical-effectiveness of remote care delivery on outcomes of relevance to people living with osteoporosis.Hepatocellular carcinoma (HCC) is a foremost type of cancer problem in which asialoglycoprotein receptors are overexpressed. In this study, asialoglycoprotein receptor-targeted nanoformulation (galactose-conjugated TPGS micelles) loaded with docetaxel (DTX) was developed to achieve its site-specific delivery for HCC therapy. The pharmaceutical characteristics like shape morphology, average particle size and zeta potential, drug entrapment efficiency, and in vitro release kinetics of developed system were evaluated. DTX-loaded galactosylated TPGS (DTX-TPGS-Gal) micelles and TPGS micelles (DTX-TPGS) were having 58.76 ± 1.82% and 54.76 ± 1.42% entrapment of the DTX, respectively. In vitro drug release behavior from micelles was controlled release. Cytotoxicitiy (IC50) of DTX-TPGS-Gal formulation on HepG2 cell lines was significantly (p ≤ 0.01) lower (6.3 ± 0.86 μg/ml) than DTX-TPGS (9.06 ± 0.82 μg/ml) and plain DTX (16.06 ± 0.98 μg/ml) indicating higher efficacy of targeted formulation. Further, in vivo biodistribution studies in animal model showed maximum drug accumulation at target site, i.