However, it was hard to know where to find this information. When experiences are shared on social media, the negative ones are more memorable and more personal. Parents thought Twitter could be an important space to communicate about the HPV vaccine if it was done in a credible, verifiable, and authentic way. Parents want to learn about the HPV vaccine through other parent experiences, especially when this aligns with science supporting the vaccine. Public health and medical communities must embrace this mix of evidence and lived experiences to deliver and discuss health information.Nucleoside analogs contribute in pharmaceutical and clinical fields as medicinal agents and approved drugs. This work focused to investigate the antimicrobial, anticancer activities, and structure-activity relationship (SAR) of cytidine and its analogs with computational studies. Microdilution was used to determine the antimicrobial activity, minimum inhibitory concentration (MIC), and minimum bactericidal concentration (MBC) of the modified analogs against human and phytopathogenic strains. Compounds (7), (10), and (14) were the most potent against Escherichia coli and Salmonella abony strains with MIC and MBC values from 0.316 ± 0.02 to 2.50 ± 0.03 and 0.625 ± 0.04 to 5.01 ± 0.06 mg/ml, respectively. The highest inhibitory activity was observed against gram-positive bacteria. Numerous analogs (10), (13), (14), and (15) exhibited good activity against the tested fungi Aspergillus niger and Aspergillus flavus. Anticancer activity of the cytidine analogs was examined through MTT colorimetric assay against Ehrlich's ascites carcinoma (EAC) tumor cells whereas compound 6 showed the maximum antiproliferative activity with an IC50 value of 1168.97 µg/ml. To rationalize this observation, their quantum mechanical and molecular docking studies have been performed against urate oxidase of A. flavus 1R51 to investigate the binding mode, binding affinity, and non-bonding interactions. It was observed that most of the analogs exhibited better binding properties than the parent drug. In silico ADMET prediction was attained to evaluate the drug-likeness properties that revealed the improved pharmacokinetic profile with lower acute oral toxicity of cytidine analogs. Based on the in vitro and in silico analysis, this exploration can be useful to develop promising cytidine-based antimicrobial drug(s). The online version contains supplementary material available at 10.1007/s40203-021-00102-0. The online version contains supplementary material available at 10.1007/s40203-021-00102-0.Cellulose is the most abundant renewable resource which has found a diverse range of applications. Cellulose dissolution is a significant property for manufacturing man-made cellulosic fiber through viscose process. Crystalline microfibrillar structure and relatively high ordered packing of polymeric chains contribute to recalcitrance and poor reactivity of cellulose. One of the most common methods to improve cellulose dissolution is cellulase treatment. Herein, cellulase treatment at different doses was studied to explore the correlation of cellulose dissolution with crystallinity. Pulp showed improvement in Fock reactivity and other properties related to viscose application. But contrary to previous studies, cellulose crystallinity as determined by XRD and FTIR did not correlate with Fock reactivity at a higher dose of cellulase. The results indicated some complex mechanism to be involved between the cellulose dissolution and crystallinity than a simple negative correlation. Cellulase treatment at 150 HCU/g resulted in the upgraded pulp suitable for viscose application.Plant Pectin acetylesterase (PAE) belongs to family CE13 of carbohydrate esterases in the CAZy database. The ability of PAE to regulate the degree of acetylation of pectin, an important polysaccharide in the cell wall, affects the structure of plant cell wall. In this study, ten PtPAE genes were identified and characterized in Populus trichocarpa genome using bioinformatics methods, and the physiochemical properties such as molecular weight, isoelectric points, and hydrophilicity, as well as the secondary and tertiary structure of the protein were predicted. According to phylogenetic analysis, ten PtPAEs can be divided into three evolutionary clades, each of which had similar gene structure and motifs. Tissue-specific expression profiles indicated that the PtPAEs had different expression patterns. Real-time quantitative PCR (RT-qPCR) analysis showed that transcription level of PtPAEs was regulated by different CO2 and nitrogen concentrations. These results provide important information for the study of the phylogenetic relationship and function of PtPAEs in Populus trichocarpa. The online version contains supplementary material available at 10.1007/s13205-021-02918-1. The online version contains supplementary material available at 10.1007/s13205-021-02918-1.Oryza sativa cv. PTT1 (Pathumthani1) was treated with phenyl-urea-based synthetic cytokinin under drought stress. Soluble sugar contents were examined in rice flag leaves at tillering and grain-filling stages. The same leaf samples were used to analyze the differential abundance intensities of proteins related to metabolism and transport of soluble sugars, and the process of senescence. The results showed drought-induced accumulation of hexose sugars (glucose and fructose) in rice flag leaves, which could be corroborated with enhanced accumulation of MST8 under drought stress. On the other hand, cytokinin-treated plants maintained the normal contents of hexose sugar in their flag leaves under drought stress, alike well-watered plants. https://www.selleckchem.com/products/gs-9973.html In the case of sucrose, cytokinin treatment reduced its accumulation at tillering stage, but the results were reversed at the grain-filling stage, where the cytokinin-treated plants maintained significantly higher contents of sucrose under drought stress. Growth stage dependent variations in sucrose contents corroborated with the accumulation of SPS (SPS1, SPS2, and SPS5) proteins, implicated in sucrose biosynthesis. In our study, among the proteins involved in sucrose transport, SUT1 transporter was induced by drought stress at both the growth stages, whereas SUT2 transporter accumulated equally in all the treatments. However, cytokinin treatment reversed the effect of drought on the accumulation of SUT1. Similarly, SWEET5, and SWEET13 proteins, which were induced by drought stress treatment, were inhibited by cytokinin treatment. However, the accumulation SWEET6, SWEET7, and SWEET15 was not influenced by the treatment of cytokinin in the flag leaves of rice. In addition, cytokinin treatment reduced the leaf wilting, enhanced the fresh weight and grain yield, and curtailed the accumulation of proteins involved in drought-induced senescence. In conclusion, the cytokinin treatment had a positive agro-economic impact on the rice plants and provided better drought adaptability.