https://www.selleckchem.com/products/ap-3-a4-enoblock.html Considering large river basins, the Mediterranean (95.2%) and West Atlantic (84.6%) regions are the most affected, while the Black (92.1%) and Caspian (96.0%) regions stand out as those with most compromised river length. In 60 years, Europe has gone from reduced impairment to over two-thirds of its large rivers with structural connectivity problems due to large dams. The number of such barriers increased significantly in the second half of the 20th century, especially main stem dams with decreasing distance to the river mouth. Currently, the structural longitudinal connectivity of European river networks is severely impacted. This concerns all regions considered, and those in southern Europe will face even higher challenges, given that this will be a future hot spot for hydropower development and predictably more affected by climate change.Bioretention has been found to lower the effluent loads of various pollutants from rainfall runoff. However, it is still a challenge to effectively use bioretention for rainfall runoff control in lateritic red soil regions where have high rainfall intensity and low soil infiltration capacity. Hence, in this study, the hydrologic performance and rainfall runoff pollutant removal capacity of field-scale biochar-amended bioretention facilities were tested with four rainfall recurrence periods under different biochar distributions, internal water storage (IWS) zone heights, and exfiltration conditions. The results confirmed that incorporation of biochar into planting soil would improve its water content raising capacity (WCRC), especially when the biochar was uniformly mixed with the lateritic red soils. Besides, more infiltrating from the planting soil layer and higher IWS zone heights effectively enhanced WCRC of the stone chip packing layer. For runoff volume control, adding biochar and increasing the IWS zonelities.Drought is a persistent, sluggish natural disaster in dev