em banks. These item banks allow investigators and clinicians to measure perceptions of social attitudes, providing information that can guide individual interventions to reduce barriers and promote facilitators. Moderate correlations between the Social Attitude banks and PROMIS and Toolbox variables provide support for the measurement and theory of environmental influences on social health and participation.The biological consequences of semen samples preconditioning with photobiomodulation (PBM) were studied on human sperm cells post cryopreservation. Donated semen samples were collected from 22 married men with normal sperm parameters according to World Health Organization (WHO) criteria. Included samples were divided into control and PBM-preconditioning (one session, 810 nm, diode laser, and 0.6 J/cm2) groups before cryopreservation procedure. Progressive sperm motility (PSM), morphology, viability, sperm mitochondrial membrane potential(MMP), intracellular reactive oxygen species (ROS) and lipid peroxidation of sperm cells were assessed post thawing. PBM preconditioning of cryopreserved semen samples most prominently increased the PSM percentage 30 min post thawing (p = 0.000).Application of PBM before cryopreservation significantly increased the number of viable spermatozoa (p = 0.000), increased significantly the number of spermatozoa with high MMP (p = 0.004) and decreased significantly the number of spermatozoa with low MMP post-thawing(P = 0. 007)compared to control group. Cryopreserved human sperm cells with PBM preconditioning showed significant decrease in the levels of intracellular ROS (47.66 ± 2.14 versus 60.42 ± 3.16, p = 0.002) and lipid peroxidation (3.06 ± 0.13 versus 3.68 ± 0.27, p = 0.05)compared to control group. Our findings, as the first evidence, indicated that PBM-preconditioning of human semen before cryopreservation provides a real and substantial advantage. This might lead to a novel strategy in improving PBM application in the procedures of assisted reproductive technologies. Preoperative use of flurbiprofen axetil (FA) is extensively adopted to modulate the effects of analgesia. However, the relationship between FA and sedation agents remains unclear. In this study, we aimed to investigate the effects of different doses of FA on the median Effective Concentration (EC50) of propofol. Ninety-six patients (ASA I or II, aged 18-65 years) were randomly assigned into one of four groups in a 1111 ratio. Group A (control group) received 10 mL of Intralipid, and groups B, C and D received 0.5 mg.kg , 0.75 mg.kg and 1 mg.kg of FA, respectively, 10 minutes before induction. The depth of anesthesia was measured by the Bispectral Index (BIS). The "up-and-down" method was used to calculate the EC50 of propofol. https://www.selleckchem.com/products/indisulam.html During the equilibration period, if BIS ≤ 50 (or BIS > 50), the next patient would receive a 0.5 μg.mL -lower (or-higher) propofol Target-Controlled Infusion (TCI) concentration. The hemodynamic data were recorded at baseline, 10 minutes after FA administration, after induc reduces the HR for adequate anesthesia in unstimulated patients. Although this result should be investigated in cases of surgical stimulation, we suggest that FA pre-administration may reduce the propofol requirement when the depth of anesthesia is measured by BIS. High-dose FA (0.75 mg.kg-1 or 1 mg.kg-1) reduces the EC50 of propofol, and 1 mg.kg-1 FA reduces the HR for adequate anesthesia in unstimulated patients. Although this result should be investigated in cases of surgical stimulation, we suggest that FA pre-administration may reduce the propofol requirement when the depth of anesthesia is measured by BIS.Breast MR imaging is the most sensitive imaging method for the detection of breast cancer and detects more aggressive malignancies than mammography and ultrasound examination. Despite these advantages, breast MR imaging has low use rates for breast cancer screening. Abbreviated breast MR imaging, in which a limited number of breast imaging sequences are obtained, has been proposed as a way to solve cost and patient tolerance issues while preserving the high cancer detection rate of breast MR imaging. This review discusses abbreviated breast MR imaging, including protocols, multicenter clinical trial results, clinical workflow implementation challenges, and future directions.Magnetic Resonance (MR) imaging is the most sensitive modality for breast cancer detection but is currently limited to screening women at high risk due to limited specificity and test accessibility. However, specificity of MR imaging improves with successive rounds of screening, and abbreviated approaches have the potential to increase access and decrease cost. There is growing evidence to support supplemental MR imaging in moderate-risk women, and current guidelines continue to evolve. Functional imaging has the potential to maximize survival benefit of screening. Leveraging MR imaging as a possible primary screening tool is therefore also being investigated in average-risk women.The sensitivity of mammography is more limited in patients with dense breasts and some patients at higher risk for breast cancer. Patients with intermediate or high risk for breast cancer may begin screening earlier and benefit from supplemental screening techniques beyond standard 2-dimensional mammography. A patient's individual risk factors for developing breast cancer, their breast density, and the evidence supporting specific modalities for a given clinical scenario help to determine the need for supplemental screening and the modality chosen. Additional factors include the availability of supplemental screening techniques at an individual institution, cost, insurance coverage, and state-specific breast density legislation.Breast magnetic resonance (MR) imaging is the most sensitive imaging modality for breast cancer detection and guidelines recommend its use, in addition to screening mammography, for high-risk women. The most recent American College of Radiology (ACR) Breast Imaging Reporting and Data System (BI-RADS) manual coordinated cross-modality BI-RADS terminology and established an outcome monitoring section that helps guide a medical imaging outcomes audit. This article provides a framework for performing a breast MR imaging audit in clinical practice, incorporating ACR BI-RADS guidance and more recently published data, clarifies common pitfalls, and discusses audit challenges related to evolving clinical practice.