In conclusion, the murine model of infection may contribute to a better understanding of the zoonotic transmission of brucellosis.Triple-negative breast cancer (TNBC) is extremely aggressive and lacks effective therapy. SAM and SH3 domain containing1 (SASH1) has been implicated in TNBC as a candidate tumor suppressor; however, the mechanisms of action of SASH1 in TNBC remain underexplored. Here, we show that SASH1 was significantly downregulated in TNBC patients samples compared with other subtypes of breast cancer. Ectopic SASH1 expression inhibited, while depletion of SASH1 enhanced, the invasive phenotype of TNBC cells, accompanied by deregulated expression of MMP2 and MMP9. The functional effects of SASH1 depletion were confirmed in the chicken chorioallantoic membrane and mouse xenograft models. Mechanistically, SASH1 knockdown downregulated the phosphorylation levels of the Hippo kinase LATS1 and its effector YAP (Yes associated protein), thereby upregulating YAP accumulation together with its downstream target CYR61. Consistently, forced SASH1 expression exhibited opposite effects. Pharmacological inhibition of YAP or knockdown of YAP reversed the enhanced cell invasion of TNBC cells following SASH1 depletion. Furthermore, SASH1-induced YAP signaling was LATS1-dependent, which in reverse enhanced phosphorylation of SASH1. The SASH1 S407A mutant (phosphorylation deficient) failed to rescue the altered YAP signaling by SASH1 knockdown. Notably, SASH1 depletion upregulated ARHGAP42 levels via YAP-TEAD and the YAP-ARHGAP42-actin axis contributed to SASH1-regulated TNBC cell invasion. Therefore, our findings uncover a new mechanism for the tumor-suppressive activity of SASH1 in TNBC, which may serve as a novel target for therapeutic intervention.Proteasome inhibitors have provided a significant advance in the treatment of multiple myeloma (MM). Consequently, there is increasing interest in developing strategies to target E3 ligases, de-ubiquitinases, and/or ubiquitin receptors within the ubiquitin proteasome pathway, with an aim to achieve more specificity and reduced side-effects. Previous studies have shown a role for the E3 ligase HUWE1 in modulating c-MYC, an oncogene frequently dysregulated in MM. Here we investigated HUWE1 in MM. We identified elevated expression of HUWE1 in MM compared with normal cells. https://www.selleckchem.com/ Small molecule-mediated inhibition of HUWE1 resulted in growth arrest of MM cell lines without significantly effecting the growth of normal bone marrow cells, suggesting a favorable therapeutic index. Studies using a HUWE1 knockdown model showed similar growth inhibition. HUWE1 expression positively correlated with MYC expression in MM bone marrow cells and correspondingly, genetic knockdown and biochemical inhibition of HUWE1 reduced MYC expression in MM cell lines. Proteomic identification of HUWE1 substrates revealed a strong association of HUWE1 with metabolic processes in MM cells. Intracellular glutamine levels are decreased in the absence of HUWE1 and may contribute to MYC degradation. Finally, HUWE1 depletion in combination with lenalidomide resulted in synergistic anti-MM activity in both in vitro and in vivo models. Taken together, our data demonstrate an important role of HUWE1 in MM cell growth and provides preclinical rationale for therapeutic strategies targeting HUWE1 in MM.Background This phase 1 study examined the safety, maximum-tolerated dose (MTD) and antitumour activity of E7449, a novel PARP 1/2 and tankyrase 1/2 inhibitor. Methods E7449 was orally administered once daily in 28-day cycles to patients with advanced solid tumours (50-800-mg doses). Archival tumour samples from consenting patients were evaluated for the expression of 414 genes in a biomarker panel (2X-121 drug-response predictor [DRP]) found to be predictive of the response to E7449 in cell lines. Results Forty-one patients were enrolled (13 pancreatic, 5 ovarian, 4 each with breast, lung or colorectal cancer and 11 with other tumour types). The most common grade ≥3 treatment-related adverse event was fatigue (n = 7, 17.1%). Five patients experienced a dose-limiting toxicity (fatigue, n = 4, 800 mg; anaphylaxis, n = 1, 600 mg) for an MTD of 600 mg. E7449 exhibited antitumour activity in solid tumours, including 2 partial responses (PRs), and stable disease (SD) in 13 patients, which was durable (>23 weeks) for 8 patients. In 13 patients, the 2X-121 DRP identified those achieving PR and durable SD. E7449 showed good tolerability, promising antitumour activity and significant concentration-dependent PARP inhibition following 50-800-mg oral dosing. Conclusion The results support further clinical investigation of E7449 and its associated biomarker 2X-121 DRP. Clinical trial registration www.ClinicalTrials.gov code NCT01618136.Unsafe medication practices and medication errors are leading causes of injury and avoidable harm worldwide and are highest in vulnerable groups. In 2017, the World Health Organization launched the third Medication Without Harm Global Patient Safety Challenge to try to reduce risks related to medical treatment. Parenteral nutrition (PN) is in the unique position that, although licensed products are available from manufacturers, formulas may be prepared ad hoc for first-line use that might not be subject to the same regulatory oversight. Safety issues around PN can arise through lack of harmonization in practices, misinterpretation and product unfamiliarity and can occur at any stage from prescription to preparation to administration. Government legislation and regulation vary considerably, with PN not explicitly handled in many countries. We therefore call on policy leaders in all countries to establish policies that ensure patient safety, and that these include PN along with medicines. The available evidence supports obtaining industry prepared PN as first-line therapy for reasons of safety, primarily, and of cost. If a suitable industry prepared ready-to-use PN is not available, standardized all-in-one PN admixtures should be the next line of care, with individualized PN being reserved for patients whose complex nutritional needs cannot be met using standardized admixtures.