https://www.selleckchem.com/products/tocilizumab.html "Smart" infusion pumps include built in drug error reduction software which uses a drug library. Studies have reported the drug library build should be undertaken by a multidisciplinary team, including a pharmacist; however, the extent or nature of the input required by the pharmacist for greatest benefit is unknown. This review aimed to identify key factors for the implementation of the smart infusion pumps, with a focus on the role of pharmacists and compare this to the experience from a case study. A literature review was conducted using Embase and Ovid Medline, and 13 eligible papers were found. Predominant themes relating to the pharmacist's role and successful implementation of the smart infusion pumps were determined. Key factors for success included team involvement across the entire process from procurement, set-up through to implementation including risk assessment and device distribution, and training, which were comparable to the case study experience. Few studies described the extent or details of the pharmacist's responsibilities.Meristem culture and somatic embryogenesis are effective tools for virus elimination of vegetatively propagated crops including grapevine (Vitis vinifera L.). While both have been shown to be useful to eliminate the main grapevine viruses, their efficiency differs depending on the virus and grapevine variety. In our work, we investigated the efficiency of these two virus elimination methods using small RNA high-throughput sequencing (HTS) and RT-PCR as virus diagnostics. Field grown mother plants of four clones representing three cultivars, infected with different viruses and viroids, were selected for elimination via somatic embryogenesis (SE) and meristem culture (ME). Our results show for the first time that using SE, elimination in mother plants was effective for all viruses, i.e., grapevine rupestris vein feathering virus (GRVFV), grapevine Syrah virus 1 (GSyV-1), Grap