https://www.selleckchem.com/products/Cyt387.html Accurate yet efficient high-throughput screenings have emerged as essential technology for enzyme engineering via directed evolution. Modern high-throughput screening platforms for oxidoreductases are commonly assisted by technologies such as surface display and rely on emulsification techniques to facilitate single-cell analysis via fluorescence-activated cell sorting. Empowered by the dramatically increased throughput, the screening of significantly larger sequence spaces in acceptable time frames is achieved but usually comes at the cost of restricted applicability. In this work, we tackle this problem by utilizing roGFP2-Orp1 as a fluorescent one-component detection system for enzymatic H2O2 formation. We determined the kinetic parameters of the roGFP2-Orp1 reaction with H2O2 and established an efficient immobilization technique for the sensor on Saccharomyces cerevisiae cells employing the lectin Concanavalin A. This allowed to realize a peroxide-sensing shell on enzyme-displaying cells, a system that was successfully employed to screen for H2O2 formation of enzyme variants in a whole-cell setting.Glyphosate, the active ingredient in RoundUp, is the most widely used herbicide on the globe, and has recently been linked to an increased risk in non-Hodgkin's lymphoma in exposed individuals. Therefore, detection and monitoring of glyphosate levels in water and soil is important for public safety. Here, we describe a biosensor for glyphosate based on an engineered Escherichia coli phosphonate-binding protein (PhnD). Mutations in the binding pocket were introduced to convert PhnD into a glyphosate-binding protein. A fluorescence group attached near the hinge of the protein was added to monitor binding of glyphosate and to determine its concentration in unknown samples. The resulting engineered biosensor can detect glyphosate in tap water and in soil samples treated with the herbicide at submicromolar concentrations, we