As scientists and physicians, we all went through a period of structured training. But for how many of us did a rapid-onset, global pandemic upend that training? Here we present 11 voices from current trainees, including medical students, graduate students, residents, and fellows, who reflect on how the pandemic altered their research, practice, and learning and, in the process, changed them.Munoz-Alia and colleagues1 demonstrate that neutralizing antibody immunity to measles resists viral evolutionary escape because it targets numerous distinct viral epitopes. Their work contributes to our understanding of what determines whether a virus can evolve to evade immunity.In a recent publication in Cell, Buffington et al. provide a fascinating example of hologenomic behavioral regulation in an autism mouse model.1 The authors report that gut bacteria from wild-type mice rescue the social deficit of Cntnap2 knockout mice.Defining immune responses that protect humans against diverse HIV strains has been elusive. Studying correlates of protection from mother-to-child transmission provides a benchmark for HIV vaccine protection because passively transferred HIV antibodies are present during infant exposure to HIV through breast milk. A previous study by our group illustrated that passively acquired antibody-dependent cellular cytotoxicity (ADCC) activity is associated with improved infant survival whereas neutralization is not. Here, we show, in another cohort and with two effector measures, that passively acquired ADCC antibodies correlate with infant survival. In combined analyses of data from both cohorts, there are highly statistically significant associations between higher infant survival and passively acquired ADCC levels (p = 0.029) as well as dimeric FcγRIIa (p = 0.002) or dimeric FcγRIIIa binding (p less then 0.001). These results suggest that natural killer (NK) cell- and monocyte antibody-mediated effector functions may contribute to the observed survival benefit and support a role of pre-existing ADCC-mediating antibodies in clinical outcome.Stem-cell-derived transplants may soon be a promising treatment option for Parkinson's disease. In preparation for clinical trial, Piao et al.1 report on generating a clinical-grade dopaminergic progenitor cell product and its rigorous testing to ensure safety and efficacy.Genome-wide association studies (GWASs) are instrumental in identifying loci harboring common single-nucleotide variants (SNVs) that affect human traits and diseases. GWAS hits emerge in clusters, but the focus is often on the most significant hit in each trait- or disease-associated locus. The remaining hits represent SNVs in linkage disequilibrium (LD) and are considered redundant and thus frequently marginally reported or exploited. Here, we interrogate the value of integrating the full set of GWAS hits in a locus repeatedly associated with cardiac conduction traits and arrhythmia, SCN5A-SCN10A. Our analysis reveals 5 common 7-SNV haplotypes (Hap1-5) with 2 combinations associated with life-threatening arrhythmia-Brugada syndrome (the risk Hap1/1 and protective Hap2/3 genotypes). Hap1 and Hap2 share 3 SNVs; thus, this analysis suggests that assuming redundancy among clustered GWAS hits can lead to confounding disease-risk associations and supports the need to deconstruct GWAS data in the context of haplotype composition.Measuring HIV-1 latent reservoir is essential for HIV-1 cure strategies. https://www.selleckchem.com/products/amg-232.html Levy et al.1 developed a multiplex droplet digital PCR (ddPCR) assay-5-target intact proviral DNA assay-to detect multiple regions of HIV-1 proviral genome and increase accuracy.Insulin-like growth factor-binding protein (IGFBP)-2 is a circulating biomarker of cardiometabolic health. Here, we report that circulating IGFBP-2 concentrations robustly increase after different bariatric procedures in humans, reaching higher levels after biliopancreatic diversion with duodenal switch (BPD-DS) than after Roux-en-Y gastric bypass (RYGB) and sleeve gastrectomy (SG). This increase is closely associated with insulin sensitization. In mice and rats, BPD-DS and RYGB operations also increase circulating IGFBP-2 levels, which are not affected by SG or caloric restriction. In mice, Igfbp2 deficiency significantly impairs surgery-induced loss in adiposity and early improvement in insulin sensitivity but does not affect long-term enhancement in glucose homeostasis. This study demonstrates that the modulation of circulating IGFBP-2 may play a role in the early improvement of insulin sensitivity and loss of adiposity brought about by bariatric surgery.Sickle cell disease (SCD) is caused by a 20A > T mutation in the β-globin gene. Genome-editing technologies have the potential to correct the SCD mutation in hematopoietic stem cells (HSCs), producing adult hemoglobin while simultaneously eliminating sickle hemoglobin. Here, we developed high-efficiency viral vector-free non-footprint gene correction in SCD CD34+ cells with electroporation to deliver SCD mutation-targeting guide RNA, Cas9 endonuclease, and 100-mer single-strand donor DNA encoding intact β-globin sequence, achieving therapeutic-level gene correction at DNA (∼30%) and protein (∼80%) levels. Gene-edited SCD CD34+ cells contributed corrected cells 6 months post-xenograft mouse transplant without off-target δ-globin editing. We then developed a rhesus β-to-βs-globin gene conversion strategy to model HSC-targeted genome editing for SCD and demonstrate the engraftment of gene-edited CD34+ cells 10-12 months post-transplant in rhesus macaques. In summary, gene-corrected CD34+ HSCs are engraftable in xenograft mice and non-human primates. These findings are helpful in designing HSC-targeted gene correction trials.Multiple sclerosis (MS) is an immune-mediated disease whose precise etiology is unknown. Several studies found alterations in the microbiome of individuals with MS, but the mechanism by which it may affect MS is poorly understood. Here we analyze the microbiome of 129 individuals with MS and find that they harbor distinct microbial patterns compared with controls. To study the functional consequences of these differences, we measure levels of 1,251 serum metabolites in a subgroup of subjects and unravel a distinct metabolite signature that separates affected individuals from controls nearly perfectly (AUC = 0.97). Individuals with MS are found to be depleted in butyrate-producing bacteria and in bacteria that produce indolelactate, an intermediate in generation of the potent neuroprotective antioxidant indolepropionate, which we found to be lower in their serum. We identify microbial and metabolite candidates that may contribute to MS and should be explored further for their causal role and therapeutic potential.