The excellent light trapping of sunlight shows great potential for photothermal applications, such as photothermal imaging, seawater desalination, and further applications.Structural coloration with artificially nanostructured materials is emerging as a prospective alternative to traditional pigments for the high resolution, sustainable recycling, and long-time durability. However, achieving bright field structural colors with dielectric nanostructures remains a great challenge due to the weak scattering in an asymmetric environment. Here, we demonstrate all-dielectric bright field structural colors with diffraction-limited resolution on the silicon-on-insulator platform. The backscattering is strongly enhanced from the constructive interference between Mie resonances of individual Si antennas and Fabry-Perot resonances supported by the SiO2 layer. The fabricated colors with varying hues and saturations show strong insensitivity with respect to the interparticle spacing and, remarkably, the viewing angle under resonant conditions. Compared with creating a quasi-homogeneous environment, our strategy is solid and complementary metal-oxide semiconductor integrable, paving the way for practical applications of structural colors in nanoscale color printing, microdisplays, and imaging.Guided by the self-assembled process and mechanism, the strategy of in situ Schiff base reaction would be capable of bringing a feasible method to construct and synthesize lanthanide compounds with distinct structures and magnetic properties. A mononuclear Dy(III) compound was synthesized through a multidentate Schiff base ligand and a chelating β-diketonate ligand, which was named as [Dy(L)(bppd)]·CH3OH [1; H2L = N,N'-bis(2-hydroxy-5-methyl-3-formylbenzyl)-N,N'-bis(pyridin-2-ylmethyl)ethylenediamine and bppd = 3-bis(pyridin-2-yl)propane-1,3-dione]. Furthermore, a new binuclear Dy(III) compound, [Dy2(H2Lox)(bppd)3]·8CH3OH [2; H4Lox = N,N'-bis[2-hydroxy-5-methyl-3-(hydroxyiminomethyl)benzyl]-N,N'-bis(pyridin-2-ylmethyl)ethylenediamine], was obtained via an in situ synthetic process. Under similar synthetic conditions, [Dy(L)(ctbd)] [3; ctbd = 1-(4-chlorophenyl)-4,4,4-trifluoro-1,3-butanedione] and [Dy2(H2Lox)(ctbd)3]·CH3OH·C4H10O (4) were synthesized by modifying the β-diketonate ligand and in situ Schiff base reaction. Compound 3 is a mononuclear configuration, while compound 4 exhibits a binuclear Dy(III) unit. Therein, formylbenzyl groups of H2L in 1 and 3 were changed to (hydroxyiminomethyl)benzyl groups in 2 and 4, respectively. In isomorphous 2 and 4, two Dy(III) centers are connected through two phenol O- atoms of the H2Lox2- ligand to form a binuclear structure. Eight-coordinated Dy(III) ions with different distortions can be observed in 1-4. The crystals of 1 and 3 suffered dissolution/precipitation to obtain 2 and 4, respectively. The relationship between the structure and magnetism in compounds 1-4 was discussed through the combination of structural, experimental, and theoretical investigations. Especially, the rates of quantum tunneling of magnetization of 1-4 were theoretically predicted and are consistent with the experimental results. For 2 and 4, the theoretically calculated dipolar parameters Jdip are consistent with the experimental observation of weak ferromagnetic coupling.With the extensive use of palladium derivatives in the industry, their environmental pollution has become more and more serious. Herein, allyl functionalized hydrazone 2D COFs (XB-COFs) were found for selective fluorescent detection of Pd2+ (detection concentration of 0.29 μM) in water. The stable structure of the hydrazone bond and the complexation ability of allyl to Pd2+ cause XB-COF to have a good fluorescence sensing effect in both acid and alkaline solutions, and its adsorption capacity for Pd2+ is up to 120 mg g-1. During the interaction between XB-COF and Pd2+, a part of Pd2+ can be reduced to Pd nanoparticles with a diameter of about 10 nm. A fluorescent test paper was prepared by the in situ growth of XB-COF onto a filter paper, which can realize visualization detection of Pd2+ in 10 s with the naked eye or under a 365 nm UV lamp. This is the first time a fluorescent test paper based on in the situ growth of COFs has been applied for the detection of heavy metal ions, which provides a new platform for the application of COF materials in the medical health field, food safety, and environmental protection.Avibactam is a potent diazobicyclooctane inhibitor of class A and C β-lactamases. The inhibitor also exhibits variable activity against some class D enzymes from Gram-negative bacteria; however, its interaction with recently discovered class D β-lactamases from Gram-positive bacteria has not been studied. Here, we describe microbiological, kinetic, and mass spectrometry studies of the interaction of avibactam with CDD-1, a class D β-lactamase from the clinically important pathogen Clostridioides difficile, and show that avibactam is a potent irreversible mechanism-based inhibitor of the enzyme. X-ray crystallographic studies at three time-points demonstrate the rapid formation of a stable CDD-1-avibactam acyl-enzyme complex and highlight differences in the anchoring of the inhibitor by class D enzymes from Gram-positive and Gram-negative bacteria.Cooperative E-H (E = B, Si) bond activations employing κ2-N,S-chelated ruthenium borate species, [PPh3κ2-N,S-(NS2C7H4)Ruκ3-H,S,S'-H2B(NC7H4S2)2], (1) are established. https://www.selleckchem.com/products/MLN8237.html Treatment of 1 with BH3·SMe2 yielded the six-membered ruthenaheterocycle [PPh3κ2-S,H-(BH3NS2C7H4)Ruκ3-H,S,S'-H2B(C7H4NS2)2] (2) formed by a hemilabile ring opening of a Ru-N bond and capturing of a BH3 unit coordinated in an "end-on" fashion. On the other hand, the bulky borane H2BMes shows different reactivity with 1 that led to the formation of the two dihydroborate complexes [κ3-S,H,H-(NBH2Mes)(S2C7H4)Ruκ3-H,S,S'-H2B(C7H4NS2)2] (3) and [PPh3κ3-S,H,H-(NBH2Mes)(S2C7H4)Ru(κ2-N,S-C7H4NS2)] (4), in which H2BMes has been inserted into the Ru-N bond of the initial κ2-N,S-chelated ligand. In an attempt to directly activate hydrosilanes by 1, reactions were carried out with H2SiPh2 that yielded two isomeric five-membered ruthenium silyl complexes, namely [PPh3κ2-S,Si-(NSiPh2)(S2C7H4)Ruκ3-H,S,S'-H2B(C7H4NS2)2] (5a,b), and the hydridotrisilyl complex [Ru(H)κ2-S,Si-(SiPh2NC7H4S23] (6).