Our data revealed a positive and dose-dependent effect of strontium addition on osteoblast activity and proliferation. In conclusion, we show here that electrodeposition at -1 V is a suitable and easy process to incorporate cations of biological interest into CaP coating.As per a report of the world health organization, an estimated 9.6 million people died due to cancer in 2018, globally. Most of the cancer death attributed to the lack of early detection and effective treatment. In the case of solid tumors, various factors such as leaky vasculature, angiogenesis, interstitial fluid pressure and lymphatic drainage are important in cancer chemotherapy. The poor penetration and retention of the drug/drug delivery system in tumor tissue are most critical issues in the way of effective treatment. In this scenario, the challenges are to design the specific nano-therapeutics with the potential to penetrate inside the adverse condition of tumor microenvironment (TME) including high interstitial pressure region and abnormal vasculature. The modification of nanocarriers surfaces with enzymes, peptides, pH-responsive moieties, antibodies etc. could be a promising strategy to improve the nanocarriers penetration inside the solid tumor. The priming with the drug before the administration of nanotherapeutics may also represents an efficient approach for solid tumor treatment. Further, the growth factors including fibroblast growth factor (FGF), platelet-derived growth factor (PDGF), vascular endothelial growth factor (VEGF) and their pathways could offer potential targeting opportunities for anticancer treatment. Recently, there is a surge in various approaches and formulation design directed towards abnormal TME for more effective cancer therapy. In this review, various factors related to the poor penetration, retention and specific delivery of chemotherapeutics inside tumor cells/tissues are discussed. The emerging formulations strategies directed to the TME and various methodologies for evaluation of their efficacy are also included in this review.Zeolites are crystalline, hydrated aluminosilicates of alkali earth cations, consisting of 3D frameworks of [SiO4]4- and [AlO4]5- tetrahedral, linked through the shared oxygen atoms, which have been widely applied in multifarious technological approaches such as adsorbents, catalysts, ion exchangers, molecular sieves for separation, and sorting the molecules according to their crystalline size dimensions. On the other hand, the unique and outstanding physical and chemical properties of zeolite materials such as porous character, ion exchangeability, water absorption capacity, immunomodulatory and antioxidative effects, biocompatibility and long-term chemical and biological stability, make them increasingly useful in various filed of biomedicine including drug delivery systems, wound healing, scaffolds used in tissue engineering, anti-bacterial and anti-microbial, implant coating, contrast agents, harmful ions removal from the body, gas absorber, hemodialysis, and teeth root filling. Therefore, this review focuses on the more recent advances of the use of zeolites in various biomedical applications feedbacks especially drug delivery, regenerative medicine, and tissue engineering with special emphasis on their biomaterial perspectives.In the present study, the combined effect of addition of varying concentrations (10-30 vol%) of biocompatible piezoelectric Na0.5K0.5NbO3 (NKN) as well as electrostatic and dynamic pulsed electrical treatment on antibacterial and cellular response of 1393 bioactive glass (1393 BG) has been examined. The phase analyses of the sintered (at 800 °C for 30 min) samples revealed the formation of 1393 BG - NKN composites without any appearance of secondary phases. The addition of 10-30 vol% NKN significantly improved the mechanical behaviour of 1393 BG like, hardness (1.7 to 2 times), fracture toughness (1.3 to 2.6 times), compressive (2.3 to 8 times) and flexural strengths (2 to 3.5 times) than monolithic 1393 BG. The piezoelectric NKN is observed to induce the antibacterial activity in 1393 BG - (10- 30 vol%) NKN composites, while Staphylococcus aureus (S. aureus, gram positive) and Escherichia coli (E. coli, gram negative) bacterial cells were exposed to unpolarized and polarized (20 kV, 500°C for 30 min) sample surfaces. The antibacterial response was examined using disc diffusion, nitro blue tetrazolium (NBT) and MTT assays. The statistical analyses revealed the significant reduction in the viability of bacterial cells on polarized 1393 BG - (10- 30 vol%) NKN composite samples. In addition, the combined effect of electrostatic and dynamic pulsed electrical stimulation (1 V/cm, 500 μs pulses) on the cellular response of 1393 BG and 1393 BG - 30 vol% NKN composites has been analysed with MG-63 osteoblast-like cells. https://www.selleckchem.com/products/Nolvadex.html The cell proliferation was observed to increase significantly for the dynamic pulsed electric field treated negatively charged surfaces.This study aimed at investigating the synthesis, characterization, and search for a biotechnological application proposal for poly [(R)-3-hydroxybutyric acid] (PHB) grafted with the n-hydroxyethyl acrylamide (HEAA) monomer. The novel copolymer was prepared by 60Co gamma radiation-induced-graft polymerization. The effect of different solvents in the graft polymerization; the degree of grafting, crystallinity, and hydrophilicity; the morphology and the thermal properties were evaluated. The polyurethane fabricated from the grafted PHB was suggested as a scaffold. The enzymatic degradation behavior and the spectroscopic, morphological, mechanical, and biological properties of the composites were assessed. According to the results, the successful grafting of HEAA onto PHB was verified. The grafting was significantly affected by the type of solvent employed. A decreased crystallinity and increased hydrophilicity of the graft copolymer, concerning the PHB, was found. An increased roughness was observed in the morphology of the polymer after grafting. The thermodynamic parameters, except for the glass transition temperature, also decreased for the synthetic biopolymer. The intended use of these scaffolds for skin tissue engineering was supported by a proper degradability and degree of porosity, improved mechanical properties, the optimal culture of human fibroblasts, and its transfection with a plasmid vector containing an enhanced green fluorescent protein.