https://www.selleckchem.com/ The co-expression network was constructed using top hub genes of the correlated module which are named as CXCL10, ARL9, AKR1B10, COX7B, RPL26, SPA17, NDUFAF2, RPF2, DAPL1, RPL34, CWC15, NDUFB3, RPL26L1, ACOT13, HSPB11, and NSA2. MicroRNAs prediction tool (miRWalk) revealed top miRNAs correlated with the interested module. Finally, a drug-target network was constructed which indicated interactions of some food and drug administration (FDA) approved drugs with hub genes. Our findings specified one important module and main hub genes which can be considered as novel biomarkers for vitiligo therapeutic purposes.Vitamin D plays a variety of physiological functions, such as regulating mineral homeostasis. More recently, it has emerged as an immunomodulator player, affecting several types of immune cells, such as regulatory T (Treg) cells. It has been reported that vitamin D exerts some mediatory effects through an epigenetic mechanism. In this study, the impacts of calcitriol, the active form of vitamin D, on the methylation of the conserved non-coding sequence 2 (CNS2) region of the forkhead box P3 (Foxp3) gene promoter, were evaluated. Fourteen C57BL/6 mice were recruited in this study and divided into two intervention and control groups. The CD4+ T cells were isolated from mice splenocytes. The expression of Foxp3, IL-10, and transforming growth factor-beta (TGF-β1) genes were relatively quantified by real-time PCR technique, and the DNA methylation percentage of every CpG site in the CNS2 region was measured individually by bisulfite-sequencing PCR. Vitamin D Intervention significantly (p less then 0.05) could increase the expression of Foxp3, IL-10, and TGF-β1 gene in the CD4+ T cells of mice comparing with the control group. Meanwhile, methylation of the CNS2 region of Foxp3 promoter was significantly decreased in three of ten CpG sites in the vitamin D group compared to the control group. The results of this study showed that vitamin D