https://www.selleckchem.com/products/arry-382.html We speculate that evolutionarily novel stresses can trigger atypical release of certain metabolites, setting the stage for the evolution of new ecological interactions.An erratum was issued for Measuring the Switch Cost of Smartphone Use While Walking. An author's name was updated. The name was corrected from Gabrielle-Naïmé Mourra to Gabrielle Naïmé Mourra.BACKGROUND Loss of the epithelial barrier is characterized by a reduction in E-cadherin expression and is a hallmark of asthma. Qi-xian decoction (QXT) is a Chinese medicinal formula that has been used to effectively treat asthma. This study aimed to investigate the effect of QXT on E-cadherin expression in human lung epithelial 16HBE cells and ovalbumin-challenged mice and to explore the underlying molecular mechanism. MATERIAL AND METHODS Ovalbumin (OVA)-induced mice were used as a model of asthma. Real-time PCR and Western blotting were utilized to examine mRNA and protein levels. Lung tissue reactive oxygen species (ROS) levels were evaluated using dichloro-dihydro-fluorescein diacetate (DCFH-DA). Serum superoxide dismutase (SOD) and the total antioxidant capacity (TAOC) were measured via enzyme-linked immunosorbent assay (ELISA)-based analyses. 16HBE cells were utilized to explore the effect of QXT or hydrogen peroxide (H₂O₂) on the expression of E-cadherin in vitro. RESULTS We found that QXT treatment increased E-cadherin expression and decreased extracellular-signal-regulated kinase (ERK) phosphorylation levels in the lung tissues of OVA-challenged mice. QXT also downregulated ROS levels and increased serum SOD and TAOC levels in OVA-challenged mice. In vitro studies demonstrated that increased ROS generation induced by H₂O₂ resulted in decreased E-cadherin expression levels in 16HBE cells, which was attenuated by inhibition of ERK signaling. Moreover, the H₂O₂-induced downregulation of E-cadherin expression, increased ROS generation, and ERK activation in