https://www.selleckchem.com/products/gw4869.html Solid-state MRI has been shown to provide a radiation-free alternative imaging strategy to CT. However, manual image segmentation to produce bone-selective MR-based 3D renderings is time and labor intensive, thereby acting as a bottleneck in clinical practice. The objective of this study was to evaluate an automatic multi-atlas segmentation pipeline for use on cranial vault images entirely circumventing prior manual intervention, and to assess concordance of craniometric measurements between pipeline produced MRI and CT-based 3D skull renderings. Dual-RF, dual-echo, 3D UTE pulse sequence MR data were obtained at 3T on 30 healthy subjects along with low-dose CT images between December 2018 to January 2020 for this prospective study. The four-point MRI datasets (two RF pulse widths and two echo times) were combined to produce bone-specific images. CT images were thresholded and manually corrected to segment the cranial vault. CT images were then rigidly registered to MRI using mutual information. The corresreement between CT and automated MR-based 3D cranial vault renderings has been achieved, thereby eliminating the laborious manual segmentation process. Target applications comprise craniofacial surgery as well as imaging of traumatic injuries and masses involving both bone and soft tissue. Good agreement between CT and automated MR-based 3D cranial vault renderings has been achieved, thereby eliminating the laborious manual segmentation process. Target applications comprise craniofacial surgery as well as imaging of traumatic injuries and masses involving both bone and soft tissue.The world has now been facing the coronavirus disease 2019 (COVID-19) pandemic due to the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) since over a year. If most of clinical presentations are benign, fragile patients are at greater risk of developing severe or fatal lung disease. Many therapies have been explored with very lo