https://www.selleckchem.com/products/ro5126766-ch5126766.html Despite huge progress in hormonal therapy and improved in vitro fertilization methods, the success rates in infertility treatment are still limited. A recently discovered mechanism revealed the interplay between the plasma protein fetuin-B and the cortical granule-based proteinase ovastacin to be a novel key mechanism in the regulation of fertilization. Upon sperm-egg fusion, cleavage of a distinct zona pellucida component by ovastacin destroys the sperm receptor, enhances zona robustness, and eventually provides a definitive block against polyspermy. An untimely onset of this zona hardening prior to fertilization would consequently result in infertility. Physiologically, this process is controlled by fetuin-B, an endogenous ovastacin inhibitor. Here we aimed to discover small-molecule inhibitors of ovastacin that could mimic the effect of fetuin-B. These compounds could be useful lead structures for the development of specific ovastacin inhibitors that can be used in infertility treatment or in vitro fertilization.The development of new materials for tomorrow's electrochemical energy storage technologies, based on thoroughly designed molecular architectures is at the forefront of materials research. In this line, we report herein the development of a new class of organic lithium-ion battery electrolytes, thermotropic liquid crystalline single-ion conductors, for which the single-ion charge transport is decoupled from the molecular dynamics (i. e., obeys Arrhenius-type conductivity) just like in inorganic (single-)ion conductors. Focusing on an in-depth understanding of the structure-to-transport interplay and the demonstration of the proof-of-concept, we provide also strategies for their further development, as illustrated by the introduction of additional ionic groups to increase the charge carrier density, which results in a substantially enhanced ionic conductivity especially at lower temperatures.The