https://www.selleckchem.com/products/td139.html Identifying single amino acid variants (SAAVs) in cancer is critical for precision oncology. Several advanced algorithms are now available to identify SAAVs, but attempts to combine different algorithms and optimize them on large data sets to achieve a more comprehensive coverage of SAAVs have not been implemented. Herein, we report an expanded detection of SAAVs in the PANC-1 cell line using three different strategies, which results in the identification of 540 SAAVs in the mass spectrometry data. Among the set of 540 SAAVs, 79 are evaluated as deleterious SAAVs based on analysis using the novel AssVar software in which one of the driver mutations found in each protein of KRAS, TP53, and SLC37A4 is further validated using independent selected reaction monitoring (SRM) analysis. Our study represents the most comprehensive discovery of SAAVs to date and the first large-scale detection of deleterious SAAVs in the PANC-1 cell line. This work may serve as the basis for future research in pancreatic cancer and personal immunotherapy and treatment.Surface reactions of electrons and ions with physisorbed organometallic precursors are fundamental processes in focused electron and ion beam-induced deposition (FEBID and FIBID, respectively) of metal-containing nanostructures. Markedly different surface reactions occur upon exposure of nanometer-scale films of (η5-Cp)Fe(CO)2Re(CO)5 to low-energy electrons (500 eV) compared to argon ions (860 eV). Electron-induced surface reactions are initiated by electronic excitation and fragmentation of (η5-Cp)Fe(CO)2Re(CO)5, causing half of the CO ligands to desorb. Residual CO ligands decompose under further electron irradiation. In contrast, Ar+-induced surface reactions proceed by an ion-molecule momentum/energy transfer process, causing the desorption of all CO ligands without significant ion-induced precursor desorption. This initial decomposition step is followed by ion-induced sputteri