https://www.selleckchem.com/products/ON-01910.html The occurrence of chemical and biological contaminants of emerging concern (CECs) was investigated in treated wastewater intended for reuse in agriculture. An agarose hydrogel diffusion-based passive sampler was exposed to the outlet of a wastewater treatment plant (WWTP) located in Cyprus, which is equipped with membrane bioreactor (MBR). Passive samplers in triplicate were exposed according to a time-series exposure plan with maximum exposure duration of 28 days. Composite flow-proportional wastewater samples were collected in parallel with the passive sampling exposure plan and were processed by solid phase extraction using HORIZON SPE-DEX 4790 and the same sorbent material (Oasis HLB) as in the passive sampler. The analysis of passive samplers and wastewater samples enabled (i) the field-scale calibration of the passive sampler prototype by the calculation of in situ sampling rates of target substances, and (ii) the investigation of in silico predicted transformation products of the four most ecotoxicolog analysis are required to assure safe application of wastewater reuse and avoid spread and crop uptake of potentially hazardous chemicals. A unique terrace with sharp gradient of environmental conditions was selected to study the microbial response and survival strategies to the extreme environments introduced by acid mine drainage (AMD) contamination. A combination of geochemical analyses, metagenomic sequencing, ex-situ microcosm setups, and statistical analyses were used to investigate the environment-microbe interactions. The microbial communities and metabolic potentials along the terrace were studied by focusing on the genes associated with important biogeochemical processes (i.e., C, N, S cycling and metal resistance). Results show that the variations of geochemical parameters substantially shaped the indigenous microbial communities. Sharp environmental gradients also impacted the microbial metabolic pot