https://www.selleckchem.com/products/apd334.html Recently, organometal halide perovskites (OHPs) have achieved significant advancement in photovoltaics, light-emitting diodes, X-ray detectors, and transistors. However, commercialization and practical applications were hindered by the notorious ion migration issue of OHPs. Here, we report a simple solvent-based surface passivation strategy with organic halide salts (methylammonium bromide (MABr) and phenylethylammonium bromide (PEABr)) to suppress the ion migration of MAPbBr3 single crystals. The surface passivation effect is evidenced by the stronger photoluminescence (PL) intensity and extended PL lifetime. Using the pulse voltage and continuous voltage current-voltage measurements, we found that single crystals with surface passivation showed negligible hysteresis on the surface due to the suppression of ion migration. As a result, the dark current stability of coplanar structure devices was significantly improved. Moreover, the vertical structure X-ray detectors with PEABr treatment exhibited a high sensitivity of 15 280 μC Gyair-1 cm-2 and a low detection limit of 87 nGyair s-1 under 5 V bias. The proposed technology would be a versatile tool to improve the performance of perovskite photoelectronic devices.Temperature is a physical cue that is easy to apply, allowing cellular behaviors to be controlled in a contactless and dynamic manner via heat-inducible/repressible systems. However, existing heat-repressible systems are limited in number, rely on thermal sensitive mRNA or transcription factors that function at low temperatures, lack tunability, suffer delays, and are overly complex. To provide an alternative mode of thermal regulation, we developed a library of compact, reversible, and tunable thermal-repressible split-T7 RNA polymerase systems (Thermal-T7RNAPs), which fused temperature-sensitive domains of Tlpa protein with split-T7RNAP to enable direct thermal control of the T7RNAP activity between 30 and 4