Adsorption kinetics and the final thickness of pellicle formed on the four materials were similar. Pellicle deposition on all materials increased surface hydrophilicity, surface energy and work of adhesion with bacteria. Surfaces with pellicle had significantly more attached bacteria than surfaces without pellicle, but the physical-chemical properties of the dental material did not significantly alter bacteria attachment. Our findings suggested that the critical factor increasing S. gordonii attachment was the salivary pellicle formed on dental materials. This is attributed to increased work of adhesion between bacteria and substrates with pellicle. New dental materials should be designed for controlling bacteria attachment by tuning thickness, composition and structure of the adsorbed salivary pellicle. Staphylococcus aureus are known to cause diseases from normal skin wound to life intimidating infections. Among the drug resistant strain, management of methicillin resistant Staphylococcus aureus (MRSA) is very difficult by using conventional antibiotic treatment. Both Zinc oxide nanoparticles (ZnONPs) and pancreatin (PK) are known to have antibacterial activity. Our main objective is to dope PK on ZnONPs to reduced zinc-oxide toxicity but increased anti-bacterial and anti-biofilms activity. In present study, we showed that, functions of zinc oxide nanoparticles with pancreatin enzyme (ZnONPs-PK) have anti-bacterial, anti-biofilms, anti-motility and anti-virulence properties against MRSA. Moreover, ZnONPs-PK were more potent to eradicate MRSA than only ZnONPs and PK. Application of the produced nano-composites as treatment on infected swine dermis predominantly reflects the potential treatment property of it. The vancomycin sensitivity of MRSA was significantly increased on application with ZnONPs-PK. Further study revealed cell membrane was the target of the ZnONPs-PK and that leads to oxidative damage of the cells. The produced nanoparticles were found completely non-toxic to human's keratinocytes and lung epithelial cell lines at its bactericidal concentration. Overall, this study emphasizes the potential mechanisms underlying the selective bactericidal properties of ZnONPs-PK against MRSA. This novel nanoparticle strategy may provide the ideal solution for comprehensive management of MRSA and its associated diseases with minimising the use of antibiotics. Research on the subject of smart biomaterials has become a cornerstone of tissue engineering and regenerative medicine. Herein, the authors report on developing magnetic hydrogels that combine high biocompatibility and remarkable activity in magnetic fields. We fabricated magnetic hydrogels based on poly(2-ethyl-2-oxazoline) (POx) via living ring-opening cationic polymerization with in-situ embedding of the carbonyl iron (CI) particles. Investigation was made as to the effect exerted by the concentration of CI on magnetic, viscoelastic/magnetorheological properties, the degree of equilibrium swelling, and cytotoxicity. The hydrogels exhibited an open pore structure, as evidenced by computed tomography (CT) imaging. Susceptibility measurements revealed the concentration-dependent field-induced particle restructuration indicating elongation/contraction of the material, thereby determining the potential for magneto-mechanical stimulation of the cells. The POx-based magnetic hydrogels were amphiphilic in character, showing decrease in their capability to hold liquid alongside increase in CI concentration. Viscoelastic measurements suggested that interaction occurred between the particles and matrix based on inconsistency between the experimental storage modulus and the Krieger-Dougherty model. The synthesized materials exhibited excellent biocompatibility toward the 3T3 fibroblast cell line in tests of extract toxicity and direct contact cytotoxicity (ISO standards). The unique combination of properties exhibited by the material - magneto-mechanical activity and biocompatibility - could prove favorable in fields such as biomedicine and biomechanics. Osteopontin is a multifunctional glycoprotein that is secreted by a variety of tissues or cells, but the role of osteopontin in the epithelial mucosal barrier has not been clearly established. We loaded osteopontin into hyaluronic acid-functionalized polymeric nanoparticles, which were administered by gavage to a colitis mouse model. The disease activity index, weight gain and colon length were calculated to assess the degree of symptoms. Epithelial permeability was measured using fluorescein isothiocyanate-conjugated dextran. The enzymatic activity of myeloperoxidase in the colon and inflammatory cytokines were assayed to assess the levels of inflammation. The histological appearance of the colon was observed by H&E staining. Tight junction proteins and signaling pathway proteins (NF-κB and phospho-NF-κB) were determined by western blotting. The resultant spherical osteopontin-loaded nanoparticles were characterized by the expected particle size (approximately 272.3 nm) and a slightly negative zeta potential (approximately -5.3 mV). Interestingly, we found that the osteopontin-loaded nanoparticles exerted remedial effects on colitis by both enhancing the intestinal barrier and alleviating inflammation in vivo according to the tested parameters. These results suggest that OPN plays a positive role in protecting the epithelial mucosal barrier and may be a therapeutic drug in gut homeostasis. Generating novel functionality from well characterised synthetic parts and modules lies at the heart of synthetic biology. Ideally, circuitry is rationally designed in silico with quantitatively predictive models to predetermined design specifications. Synthetic circuits are intrinsically stochastic, often dynamically modulated and set in a dynamic fluctuating environment within a living cell. https://www.selleckchem.com/btk.html To build more complex circuits and to gain insight into context effects, intrinsic noise and transient performance, characterisation techniques that resolve both heterogeneity and dynamics are required. Here we review recent advances in both in vitro and in vivo microfluidic technologies that are suitable for the characterisation of synthetic circuitry, modules and parts.