https://www.selleckchem.com/products/cvt-313.html Great attention has been paid to cytotoxic proteins (e.g., ribosome-inactivating proteins, RIPs) possessing high anticancer activities; unlike small drugs, cytotoxic proteins can effectively retain inside the cells and avoid drug efflux mediated by multidrug resistance transporters due to the large-size effect. However, the clinical translation of these proteins is severely limited because of various biobarriers that hamper their effective delivery to tumor cells. Hence, in order to overcome these barriers, many smart drug delivery systems (DDS) have been developed. In this review, we will introduce two representative type I RIPs, trichosanthin (TCS) and gelonin (Gel), and overview the major biobarriers for protein-based cancer therapy. Finally, we outline advances on the development of smart DDS for effective delivery of these cytotoxic proteins for various applications in cancer treatment. Copyright © 2019 American Chemical Society.Chronic inflammation is a component of numerous diseases including autoimmune, metabolic, neurodegenerative, and cancer. The discovery and characterization of specialized pro-resolving mediators (SPMs) critical to the resolution of inflammation, and their cognate G protein-coupled receptors (GPCRs) has led to a significant increase in the understanding of this physiological process. Approximately 20 ligands, including lipoxins, resolvins, maresins, and protectins, and 6 receptors (FPR2/ALX, GPR32, GPR18, chemerin1, BLT1, and GPR37) have been identified highlighting the complex and multilayered nature of resolution. Therapeutic efforts in targeting these receptors have proved challenging, with very few ligands apparently progressing through to preclinical or clinical development. To date, some knowledge gaps remain in the understanding of how the activation of these receptors, and their downstream signaling, results in efficient resolution via apoptosis, phagocytosis, and efferocytosis of