Primary sclerosing cholangitis (PSC) is a progressive fibrosing cholestatic liver disease that is strongly associated with inflammatory bowel disease (IBD). https://www.selleckchem.com/products/bp-1-102.html PSC-associated IBD (PSC-IBD) displays a unique phenotype characterized by right-side predominant colon inflammation and increased risk of colorectal cancer compared to non-PSC-IBD. The frequent association and unique phenotype of PSC-IBD suggest distinctive underlying disease mechanisms from other chronic liver diseases or IBD alone. Multidrug resistance protein 2 knockout (Mdr2-/-) mice develop spontaneous cholestatic liver injury and fibrosis mirroring human PSC. As a novel model of PSC-IBD, we treated Mdr2-/- mice with dextran sulfate sodium (DSS) to chemically induce colitis (Mdr2-/-/DSS). Mdr2-/- mice demonstrate alterations in fecal bile acid composition and enhanced colitis susceptibility with increased colonic adhesion molecule expression, particularly mucosal addressin-cell adhesion molecule 1 (MAdCAM-1). In vitro, ursodeoxycholic acid (UDCA) co-treatment resulted in a dose dependent attenuation of TNF-α-induced endothelial MAdCAM-1 expression. In the combined Mdr2-/-/DSS model, UDCA supplementation attenuated colitis severity and downregulated intestinal MAdCAM-1 expression. These findings suggest a potential mechanistic role for alterations in bile acid signaling in modulating MAdCAM-1 expression and colitis susceptibility in cholestasis-associated colitis. Together, our findings provide a novel model and new insight into the pathogenesis and potential treatment of PSC-IBD.COVID-19 pandemic has resulted in 16,114,449 cases with 646,641 deaths from the 217 countries, or territories as on July 27th 2020. Due to multifaceted issues and challenges in the implementation of the safety and preventive measures, inconsistent coordination between societies-governments and most importantly lack of specific vaccine to SARS-CoV-2, the spread of the virus that initially emerged at Wuhan is still uprising after taking a heavy toll on human life. In the present study, we mapped immunogenic epitopes present on the four structural proteins of SARS-CoV-2 and we designed a multi-epitope peptide based vaccine that, demonstrated a high immunogenic response with a vast application on world's human population. On codon optimization and in-silico cloning, we found that candidate vaccine showed high expression in E. coli and immune simulation resulted in inducing a high level of both B-cell and T-cell mediated immunity. The results predicted that exposure of vaccine by administrating three injections significantly subsidized the antigen growth in the system. The proposed candidate vaccine found promising by yielding desired results and hence, should be validated by practical experimentations for its functioning and efficacy to neutralize SARS-CoV-2.Staphylococcal enterotoxin B (SEB), encoded by the seb gene, is a virulence factor produced by Staphylococcus aureus that is involved mainly in food poisoning and is known to act as an aggravating factor in patients with atopic dermatitis. Research results in animal infection models support the concept that superantigens, including SEB contribute to sepsis and skin and soft tissue infections. In contrast to antibiotics, antimicrobial photodynamic inactivation (aPDI) is a promising method to combat both bacterial cells and virulence factors. The main aims of this research were to (1) select the most stable reference genes under sublethal aPDI treatments and (2) evaluate the impact of aPDI on seb. Two aPDI combinations were applied under sublethal conditions rose bengal (RB) and green light (λmax = 515 nm) and new methylene blue (NMB) and red light (λmax = 632 nm). The stability of ten candidate reference genes (16S rRNA, fabD, ftsZ, gmk, gyrB, proC, pyk, rho, rpoB and tpiA) was evaluated upon aPDI using four software packages-BestKeeper, geNorm, NormFinder and RefFinder. Statistical analyses ranked ftsZ and gmk (RB + green light) and ftsZ, proC, and fabD (NMB + red light) as the most stable reference genes upon photodynamic treatment. Our studies showed downregulation of seb under both aPDI conditions, suggesting that aPDI could decrease the level of virulence factors.Upstream open reading frames (uORFs) are present in the 5'-untranslated regions of many eukaryotic mRNAs, and some peptides encoded by these regions play important regulatory roles in controlling main ORF (mORF) translation. We previously developed a novel pipeline, ESUCA, to comprehensively identify plant uORFs encoding functional peptides, based on genome-wide identification of uORFs with conserved peptide sequences (CPuORFs). Here, we applied ESUCA to diverse animal genomes, because animal CPuORFs have been identified only by comparing uORF sequences between a limited number of species, and how many previously identified CPuORFs encode regulatory peptides is unclear. By using ESUCA, 1517 (1373 novel and 144 known) CPuORFs were extracted from four evolutionarily divergent animal genomes. We examined the effects of 17 human CPuORFs on mORF translation using transient expression assays. Through these analyses, we identified seven novel regulatory CPuORFs that repressed mORF translation in a sequence-dependent manner, including one conserved only among Eutheria. We discovered a much higher number of animal CPuORFs than previously identified. Since most human CPuORFs identified in this study are conserved across a wide range of Eutheria or a wider taxonomic range, many CPuORFs encoding regulatory peptides are expected to be found in the identified CPuORFs.Inflammation might substantially contribute to the limited therapeutic success of current systemic therapies in colorectal cancer (CRC). Amongst cytokines involved in CRC biology, the proinflammatory chemokine IL-8 has recently emerged as a potential prognostic/predictive biomarker. Here, we show that BRAF mutations and PTEN-loss are associated with high IL-8 levels in CRC models in vitro and that BRAF/MEK/ERK, but not PI3K/mTOR, targeting controls its production in different genetic contexts. In particular, we identified a BRAF/ERK2/CHOP axis affecting IL-8 transcription, through regulation of CHOP subcellular localization, and response to targeted inhibitors. Moreover, RNA Pol II and an open chromatin status in the CHOP-binding region of the IL-8 gene promoter cooperate towards increased IL-8 expression, after a selective BRAF inhibition. Overall, our data show that IL-8 production is finely and differentially regulated depending on the tumor genetic context and might be targeted for therapeutic purposes in molecularly defined subgroups of CRC patients.