https://www.selleckchem.com/products/gusacitinib.html Dog mobility across the urban-wildland interface is an important driver for this and other adverse effects of canines on wildlife populations and is an active topic of disease ecologists and conservation biologists. Other canine scientists, including veterinary clinicians and physiologists, study more mechanistic aspects of dog mobility the comparative kinetics, kinematics, and energetics of dog locomotor health. I outline the prevalent methodological approaches and breed-specific findings within dog activity and health research, then conclude by recognizing promising technologies that are bridging disciplinary gaps in canine science.Tails are widespread in the animal world and play important roles in locomotor tasks, such as propulsion, maneuvering, stability, and manipulation of objects. Kangaroo rats, bipedal hopping rodents, use their tail for balancing during hopping, but the role of their tail during the vertical evasive escape jumps they perform when attacked by predators has yet to be determined. Because we observed kangaroo rats swinging their tails around their bodies while airborne following escape jumps, we hypothesized that kangaroo rats use their tails to not only stabilize their bodies while airborne, but also to perform aerial re-orientations. We collected video data from free-ranging desert kangaroo rats (D. deserti) performing escape jumps in response to a simulated predator attack and analyzed the rotation of their bodies and tails in the yaw plane (about the vertical-axis). Kangaroo rat escape responses were highly variable. The magnitude of body re-orientation in yaw was independent of jump height, jump distance, and aerial time. Kangaroo rats exhibited a stepwise re-orientation while airborne, in which slower turning periods corresponded with the tail center of mass being aligned close to the vertical rotation axis of the body. To examine the effect of tail motion on body reorientation durin