The role of electron acceptor/donor group substitution on the photophysical properties of tris(salicylideneanilines) (TSANs) was investigated. These compounds were synthesised and characterised through spectroscopic techniques including steady state absorption and emission spectroscopies. Their photochemical reaction mechanisms and properties were explored with the aid of ab initio methods of quantum chemistry. The obtained results allow us to verify the dependence of multiple emission bands on the substitution of electron donating and accepting groups to the tris(salicylideneaniline) core. The results also stress the differences in phosphorescence behaviour of TSANs for which this type of emission has not been reported so far.With global warming and the depletion of fossil resources, our fossil-fuel-dependent society is expected to shift to one that instead uses hydrogen (H2) as clean and renewable energy. Water-splitting photocatalysts can produce H2 from water using sunlight, which are almost infinite on the earth. However, further improvements are indispensable to enable their practical application. To improve the efficiency of the photocatalytic water-splitting reaction, in addition to improving the semiconductor photocatalyst, it is extremely effective to improve the cocatalysts (loaded metal nanoclusters, NCs) that enable the reaction to proceed on the photocatalysts. We have thus attempted to strictly control metal NCs on photocatalysts by introducing the precise-control techniques of metal NCs established in the metal NC field into research on water-splitting photocatalysts. Specifically, the cocatalysts on the photocatalysts were controlled by adsorbing atomically precise metal NCs on the photocatalysts and then removing the protective ligands by calcination. This work has led to several findings on the electronic/geometrical structures of the loaded metal NCs, the correlation between the types of loaded metal NCs and the water-splitting activity, and the methods for producing high water-splitting activity. We expect that the obtained knowledge will lead to clear design guidelines for the creation of practical water-splitting photocatalysts and thereby contribute to the construction of a hydrogen-energy society.The late stage functionalization (LSF) of complex biorelevant compounds is a powerful tool to speed up the identification of structure-activity relationships (SARs) and to optimize ADME profiles. To this end, visible-light photocatalysis offers unique opportunities to achieve smooth and clean functionalization of drugs by unlocking site-specific reactivities under generally mild reaction conditions. This review offers a critical assessment of current literature, pointing out the recent developments in the field while emphasizing the expected future progress and potential applications. Along with paragraphs discussing the visible-light photocatalytic synthetic protocols so far available for LSF of drugs and drug candidates, useful and readily accessible synoptic tables of such transformations, divided by functional groups, will be provided, thus enabling a useful, fast, and easy reference to them.With the use of Laser Induced Breakdown Spectroscopy (LIBS), fast and semi non-destructive elemental analysis of ball-point pen writings has been performed directly from paper surfaces, aiming to obtain maximum differentiation between pens with a minimum number of pulses. The instrumental variables, the delay time, laser pulse energy and number of pulses per point, were evaluated through factorial design and optimum values were obtained through a quadratic regression model. Several atomic emission lines were tested as fingerprints in order to improve the differentiation between the tested inks and the range of 212-228 and 324-328 nm, which corresponds to Cu emission, demonstrated to be the best alternative as a discriminatory factor for two pens of the same color. However, the background contribution of cheque paper limited the multielement profile of the technique. Seventeen different pens were analyzed. Principal Component Analysis (PCA) treatment was used to classify the samples in clusters and to assemble hyperspectral images in order to obtain visual differentiation of the inks in a scores map. The results obtained by LIBS analysis were verified by microwave-assisted digestion of inks and analysis by ICP OES. Lastly, a real situation test was conducted where a forged document was analyzed by the proposed methodology as an alternative to distinguish between two inks of the same color, originating from different pens. For this proof of concept study, seventeen samples were evaluated, but further studies related to heterogeneity between pulses and samples should be carried out.Vanadium cluster anions are highly reactive making the preparation of pure Vn- and the observation of their reactivity extremely challenging. Herein, well-resolved anionic Vn- clusters are prepared enabling an in-depth study on their reactions with O2 in the gas phase. While pure metal clusters of a magic number are not identified due to the strong V-O bonding, interestingly an unexpected oxide V11O15- was experimentally observed in surviving O2 etching reactions. First-principles theory calculations indicate that V11O15- possesses a body-centered pentagonal prism structure (D5h, ), with the V@V10 core fully protected by 15 oxygen bridges. https://www.selleckchem.com/products/ipi-549.html Such an oxygen-protected metal cluster [V@V10O15]- exhibits typical superatom orbital features pertaining to the V@V10 core which shows effective metal-metal coordination bonding. Meanwhile, the high stability of [V@V10O15]- is reinforced by the V-O-V conjugation interactions which help to maintain the structural integrity, resulting in 3D inorganic aromaticity. This finding of such an oxygen-passivated superatom cluster sheds light on the bonding nature in ligand-protected metal clusters via wet synthesis.Anaplastic thyroid cancer (ATC) is an undifferentiated and highly aggressive type of thyroid cancer and is extremely resistant to standard therapies such as surgical resection and radioactive iodine therapy. Although targeted therapeutic agents including small molecule drugs and monoclonal antibodies are rapidly developed in recent years, no ATC targeted drugs are available to date; thereby, novel targeted therapies are needed to improve the outcomes of ATC patients. Aptamers are single-stranded DNA (or RNA) molecules that can selectively bind to cancer specific antigens, and aptamer-based targeted therapy has certain advantages over that based on antibodies due to its high binding affinity and low immunogenicity. Here, we identified that CD133, a cancer stem cell marker, was specifically expressed in ATC tumor tissues and cells, implying that CD133 is a potential drug target for ATC therapy. Additionally, we successfully obtained a CD133 targeted aptamer AP-1 by paired cell-based SELEX, which can precisely recognize CD133 antigen in vitro.