https://www.selleckchem.com/products/ly3295668.html Dietary calcium binds Fluoride (F), thus preventing excess F absorption. We aimed to assess the efficacy of supplementing calcium-containing Eggshell Powder (ESP) on F absorption using urine F excretion and on fluorosis symptoms. In total, 82 women (41 Intervention Group, IG; 41 Control Group, CG) were recruited; overall, 39 in each group completed the trial. Morning spot urine was collected before (baseline, BL) and after (endline, EL) the intervention that was 6-months daily supplementation with 2.4 g ESP (providing ~1000 mg of calcium). Dental, skeletal, and non-skeletal fluorosis assessments was carried out at BL and, except for dental, at EL. Relative risk (RR) and linear generalized estimating equation were used to compare outcomes between groups. At BL, urinary F excretion in the IG and CG groups was similar, ~10 mg/L. At EL, urinary F excretion in IG women was six-fold lower (β = -6.1 (95% CI -7.1, -5.1)) compared to CG. The risk of developing skeletal and non-skeletal fluorosis were significantly (p less then 0.001) reduced in the intervention group. A significant reduction in urinary F excretion and reduction in many fluorosis symptoms were observed among women supplemented with calcium-containing ESP, thus providing evidence for using this dietary calcium source for mitigation of fluorosis. Clinical trials registration NCT03355222.1'-acetoxychavicol acetate (ACA) extracted from the rhizomes of Alpinia conchigera Griff (Zingiberaceae) has been shown to deregulate the NF-ĸB signaling pathway and induce apoptosis-mediated cell death in many cancer types. However, ACA is a hydrophobic ester, with poor solubility in an aqueous medium, limited bioavailability, and nonspecific targeting in vivo. To address these problems, ACA was encapsulated in a nanostructured lipid carrier (NLC) anchored with plerixafor octahydrochloride (AMD3100) to promote targeted delivery towards C-X-C chemokine receptor type 4 (CXCR4)-e