The slowly digestible fraction in potato starch increased from 34.29% to 53.22% using StGtfB of 5 U/g starch. This low viscoelastic and slowly digestible potato starch had great potential with respect to low and stable postprandial blood glucose.A facile synthesis strategy by combination self-activation of biomass materials with heteroatom dopant in one-step is developed to fabricate porous carbons (NO-PCMs) doping with N, O, and S elements from direct carbonization of sodium lignosulfonate and melamine mixture. Two different types of active defects are constructed simultaneously through the decomposition of sodium lignosulfonate in NO-PCMs, exhibiting hierarchical porosity and abundant heteroatoms contents. The typical NO-PCMs displayed high specific capacitance (300 F g-1 at 0.1 A g-1) and outstanding cycling stability (99% capacitance retention after 10,000 charge/discharge cycles at 10 A g-1) in 6 M KOH electrolyte. https://www.selleckchem.com/products/OSI-930.html Furthermore, the assembled symmetric supercapacitors exhibited high specific capacitance of 162 F g-1 at 20 A g-1, 71% capacitance retention at current density up to 20 A g-1, and possessed high specific energy density of 21.6 Wh kg-1 with an excellent power density of 92 W kg-1 operated in the wide voltage range of 1.8 V in 1 M Na2SO4 aqueous electrolyte, demonstrating the broad prospects of biomass/biowaste being used to prepare electrode materials.This study attempted to prepare ternary conjugate emulsion from bovine serum albumin (BSA), dextran (DEX) and gallic acid (GA) to improve the stability of conjugate emulsion and the bioaccessibility of capsorubin. The release of capsorubin was further delayed by sodium alginate capsules in the intestinal phase. First, protein formed new functional groups and covalent bonds was analyzed by Fourier transform infrared (FTIR) and sodium dodecyl sulphate polyacrylamide gel electrophoresis (SDS-PAGE). Next, the stability of the ternary conjugate showed distinct pH correlation and the higher stability near the isoelectric point. Finally, the bioaccessibility of capsorubin embedded in sodium alginate emulsion was higher than that of ternary conjugate emulsion (65% and 34%).Polysaccharide is one of the necessary macromolecules in life activities, and it is also a very promising natural product for tumor prevention and treatment. In this study, two homogeneous polysaccharides (APS-4I and APS-4II) were isolated from Angelica sinensis (Oliv.) Diels. APS-4I was a linear glucan with molecular weight of 16.1 kDa, which was composed of 88.4% α-1,6-Glcp, 4.1% α-1,2-Glcp, 3.9% α-1,3-Glcp, and 2.8% α-T-Glcp. APS-4II was a novel polysaccharide with molecular weight of 11.1 kDa, which consisted of 55.4% α-1,6-Glcp, 10.4% α-1,3,5-Araf, 8.7% α-T-Araf, 9.2% α-1,5-Araf, 4.0% α-1,3-Araf, 3.6% α-1,4-Galp, and 9.1% β-1,3-Galp. NMR results demonstrated that APS-4II has a backbone composed of →6)-α-Glcp-(1 → 6)-α-Glcp-(1 → 5)-α-Araf-. (1 → 5)-α-Araf-(1 → 3,5)-α-Araf-(1 → 3)-β-Galp-(1 → 3)-β-Galp-(1 → 4)-α-Galp-(1 → 3)-α-Araf-(1 → 3,5)-α-Araf-(1→. Both APS-4I and APS-4II inhibited the tumor growth of B16-bearing mice, and the suppressive effect of APS-4II reached 64.7 ± 7.3%. Meanwhile, there were higher lymphocyte numbers and the levels of IL-2, IFN-γ, and TNF-α in peripheral blood of APS-4II-treated mice than those in APS-4I-treated mice. Furthermore, APS-4II showed a higher inhibitory effect on the proliferation of B16 cells and stronger promoting effects on the proliferation of splenocytes, the phagocytosis of peritoneal macrophages, and the cytotoxicity of NK cells. These results demonstrated that APS-4II could be a promising therapeutic agent for melanoma.Burn injury has posed devastating burdens on the public health due to its inevitable damage to the skin structure resulting in the increased risk of infection. Therefore, it is highly demanding to develop efficacious antibacterial wound-healing dressing. Despite the favourable wound-healing activities, the curative efficacy of phytochemical compounds of quercetin (Qe) and its derivatives is limited by their poor water solubility. Here, we have fabricated a novel electrospun nanofiber membrane (ENM) consisting of polycaprolactone (PCL), chitosan oligosaccharides (COS), and Qe/Rutin (Ru) as the potential bioactive dressing for wound healing. The incorporation of chitosan oligosaccharides (COSs) in the PCL scaffold at the optimized molar ratio not only contributed to the improved hydrophilicity and water absorption performance of the ENM but effectively increased the specific surface area of the formed nanofibers. In particular, the antioxidant and antibacterial activities of the Qe/rutin-loaded nanofiber membranes were tested, which revealed that the PCL-COS-Qe membrane exhibited superior performance among all nanofiber membranes. Therefore, the developed PCL-COS-Qe/Ru nanofiber membranes hold enormous potential as healthcare products, such as wound dressings for burn injuries.The stability of self-assembled drug nanocarriers during blood circulation and the controlled intracellular drug delivery are two challenges in cancer therapy. In this paper, we constructed an adenosine triphosphate (ATP)/hyaluronidase(Hyals) dually responsive core-shell hyaluronan/chitosan-based drug nanocarrier for breast cancer therapy, using SNX-loaded 3-fluoro-4-carboxyphenylboronic acid-conjugated quaternary ammonium chitosan nanoparticles (SNX@HTCC-FPBA NPs) as the core and crosslinked polyethylene glycol-/methacrylate-modified hyaluronic acid (mHA-PEG) as the shell. The formed SNX@HTCC-FPBA/mHA-PEG NPs were stable against salt ion strength, pH values and human plasma mimicking the bloodstream, but ATP/Hyals dually sensitive with a drug delivery of 85% within 48 h in the mimicking intracellular environment of breast cancer cells. These nanoparticles showed a low hemolysis of less than 3%, a high resistance to bovine serum albumin adsorption of 0.06 mg/mg, and an efficient internalization by two breast cancer cell lines (MCF-7 and MDA-MB-453). The cell culture indicated that they were friendly to human skin fibroblasts, but presented a close IC50 value to SNX for MCF-7 (0.14 μg mL-1) and MDA-MB-453 (0.05 μg mL-1) at 48 h, respectively. Thus, SNX@HTCC-FPBA/mHA-PEG NPs were potential drug nanocarriers for breast tumor therapy.