These observations, and the ability to image several embryos simultaneously, support the use of eZXM and SPIM imaging as a functional screening platform to identify compounds that suppress cancer cell spread and invasion.The zinc transcriptional regulator (ZitR) functions as a metalloregulator that fine tunes transcriptional regulation through zinc-dependent DNA binding. However, the molecular mechanism of zinc-driven allosteric control of the DNA binding to ZitR remains elusive. Here, we performed enhanced sampling accelerated molecular dynamics simulations to figure out the mechanism, revealing the role of protein dynamics in the zinc-induced allosteric control of DNA binding to ZitR. The results suggest that zinc-free ZitR samples distinct conformational states, only a handful of which are compatible with DNA binding. Remarkably, zinc binding reduces the conformational plasticity of the DNA-binding domain of ZitR, promoting the population shift in the ZitR conformational ensemble towards the DNA binding-competent conformation. Further co-binding of DNA to the zinc-ZitR complex stabilizes this competent conformation. These findings suggest that ZitR-DNA interactions are allosterically regulated in a zinc-mediated conformational preselection manner, highlighting the importance of conformational dynamics in the regulation of transcription factor family.Reverse intersystem crossing (RISC), the uphill spin-flip process from a triplet to a singlet excited state, plays a key role in a wide range of photochemical applications. Understanding and predicting the kinetics of such processes in vastly different molecular structures would facilitate the rational material design. Here, we demonstrate a theoretical expression that successfully reproduces experimental RISC rate constants ranging over five orders of magnitude in twenty different molecules. We show that the spin flip occurs across the singlet-triplet crossing seam involving a higher-lying triplet excited state where the semi-classical Marcus parabola is no longer valid. The present model explains the counterintuitive substitution effects of bromine on the RISC rate constants of previously unknown molecules, providing a predictive tool for material design.Honeycomb layered oxides are a novel class of nanostructured materials comprising alkali or coinage metal atoms intercalated into transition metal slabs. The intricate honeycomb architecture and layered framework endows this family of oxides with a tessellation of features such as exquisite electrochemistry, unique topology and fascinating electromagnetic phenomena. Despite having innumerable functionalities, these materials remain highly underutilised as their underlying atomistic mechanisms are vastly unexplored. Therefore, in a bid to provide a more in-depth perspective, we propose an idealised diffusion model of the charged alkali cations (such as lithium, sodium or potassium) in the two-dimensional (2D) honeycomb layers within the multi-layered crystal of honeycomb layered oxide frameworks. This model not only explains the correlation between the excitation of cationic vacancies (by applied electromagnetic fields) and the Gaussian curvature deformation of the 2D surface, but also takes into consideration, the quantum properties of the cations and their inter-layer mixing through quantum tunnelling. Through this work, we offer a novel theoretical framework for the study of multi-layered materials with 2D cationic diffusion currents, as well as providing pedagogical insights into the role of topological phase transitions in these materials in relation to Brownian motion and quantum geometry.Phenomic profiles are high-dimensional sets of readouts that can comprehensively capture the biological impact of chemical and genetic perturbations in cellular assay systems. Phenomic profiling of compound libraries can be used for compound target identification or mechanism of action (MoA) prediction and other applications in drug discovery. To devise an economical set of phenomic profiling assays, we assembled a library of 1,008 approved drugs and well-characterized tool compounds manually annotated to 218 unique MoAs, and we profiled each compound at four concentrations in live-cell, high-content imaging screens against a panel of 15 reporter cell lines, which expressed a diverse set of fluorescent organelle and pathway markers in three distinct cell lineages. https://www.selleckchem.com/products/nu7441.html For 41 of 83 testable MoAs, phenomic profiles accurately ranked the reference compounds (AUC-ROC ≥ 0.9). MoAs could be better resolved by screening compounds at multiple concentrations than by including replicates at a single concentration. Screening additional cell lineages and fluorescent markers increased the number of distinguishable MoAs but this effect quickly plateaued. There remains a substantial number of MoAs that were hard to distinguish from others under the current study's conditions. We discuss ways to close this gap, which will inform the design of future phenomic profiling efforts.Morphological differences associated with sex or stage, together with total lipids and carotenoids, were studied in Euphausia superba as possible indicators of physiological condition. E. superba displays sexual dimorphism during growth. A group of mature males, called Males II herein, has a greater abdominal length, suggesting that they are faster swimmers, a feature implying higher metabolic rates and a higher demand for protecting pigments like carotenoids. Mature Males II have proportionally lower lipids but higher total lipid-soluble carotenoids, a counterintuitive finding. Males II also have bigger eyes. Significant regressions with carotenoids were found for wet weight, abdominal length, and eye diameter. On a spatial analysis, population composition reflects reproductive activity. Males II would be in search of females for fecundation and, thus, are dominant in some areas. The PCA analysis of 10 allometric and biochemical variables show a distinct Males II group differing in morphology, carotenoids, and lipid contents. The carotenoidlipid ratio was highest for Males II, supporting the hypothesis of the role of carotenoids in the activity of the species. Mature males may experience physiological stress during reproduction and probably die shortly afterwards. A relationship between activity, morphometrics, and carotenoid content seems evident, deserving further investigation.