https://www.selleckchem.com/products/blz945.html Not an IOL itself, but rather a high-tech innovation that so far has mostly been implanted during cataract surgery, is a microelectronic sensor that measures habitual intraocular pressure (IOP) at any given time and promises to revolutionize the management of glaucoma patients. The last generation of this device (Eyemate; Implandata Opthalmics Products GmbH) is implanted during small-incision cataract surgery; the latest development is an even smaller sensor that will be inserted suprachoroidally before, in the near future, such a device will be part of a capsular ring. These IOP sensors are a prime example that IOL technology will continue to be a driving force in ophthalmology, with a positive impact far beyond cataract surgery.There is an increasing demand for astaxanthin in food, feed, cosmetics and pharmaceutical applications because of its superior anti-oxidative and coloring properties. However, naturally produced astaxanthin is expensive, mainly due to low productivity and limited sources. Reprogramming of microorganisms for astaxanthin production via metabolic engineering is a promising strategy. We primarily focus on the application of synthetic biology, enzyme engineering and metabolic engineering in enhancing the synthesis and accumulation of astaxanthin in microorganisms in this review. We also discuss the biosynthetic pathways of astaxanthin within natural producers, and summarize the achievements and challenges in reprogramming microorganisms for enhancing astaxanthin production. This review illuminates recent biotechnological advances in microbial production of astaxanthin. Future perspectives on utilization of new technologies for boosting microbial astaxanthin production are also discussed.The design, fabrication, and application of edible nanoemulsions for the encapsulation and delivery of bioactive agents has been a highly active research field over the past decade or so. In particular, they have b