https://www.selleckchem.com/products/r-hts-3.html Notably, in Eµ-Irf8 mice, the lymphomagenic Irf8 targets Aicda and Bcl6 are overexpressed in mature B-cells. Yet, the incidence of B-cell lymphomas is not increased in the Eµ-Irf8 model, even though their estimated survival probability is significantly lower than that of WT controls. Together, these observations suggest that the penetrance on the Irf8-driven phenotype may be incomplete and that introduction of second genetic hit, a common strategy in mouse models of lymphoma, may be necessary to uncover the pro-lymphoma phenotype of the Eµ-Irf8 mice.Emerging viral pathogens cause substantial morbidity and pose a severe threat to health worldwide. However, a universal antiviral strategy for producing safe and immunogenic inactivated vaccines is lacking. Here, we report an antiviral strategy using the novel singlet oxygen (1O2)-generating agent LJ002 to inactivate enveloped viruses and provide effective protection against viral infection. Our results demonstrated that LJ002 efficiently generated 1O2 in solution and living cells. Nevertheless, LJ002 exhibited no signs of acute toxicity in vitro or in vivo. The 1O2 produced by LJ002 oxidized lipids in the viral envelope and consequently destroyed the viral membrane structure, thus inhibiting the viral and cell membrane fusion necessary for infection. Moreover, the 1O2-based inactivated pseudorabies virus (PRV) vaccine had no effect on the content of the viral surface proteins. Immunization of mice with LJ002-inactiviated PRV vaccine harboring comparable antigen induced more neutralizing antibody responses and efficient protection against PRV infection than conventional formalin-inactivated vaccine. Additionally, LJ002 inactivated a broad spectrum of enveloped viruses. Together, our results may provide a new paradigm of using broad-spectrum, highly effective inactivants functioning through 1O2-mediated lipid oxidation for developing antivirals that target the viral membra