https://www.selleckchem.com/products/gm6001.html Additionally, the expression levels of genes involved in synapse and antioxidant activity were downregulated in hippocampus of 3xTg mice at 9 months old compared with age-matched wild-type mice, which were suppressed by betaine intake. Betaine may be applicable as an agent preventing the progression of AD by improving the synaptic structure/function and/or antioxidant activity. Betaine may be applicable as an agent preventing the progression of AD by improving the synaptic structure/function and/or antioxidant activity. The most important hallmark in the neuropathology of Alzheimer's disease (AD) is the formation of amyloid-β (Aβ) fibrils due to the misfolding/aggregation of the Aβ peptide. Preventing or reverting the aggregation process has been an active area of research. Naturally occurring products are a potential source of molecules that may be able to inhibit Aβ42 peptide aggregation. Recently, we and others reported the anti-aggregating properties of curcumin and some of its derivatives in vitro, presenting an important therapeutic avenue by enhancing these properties. To computationally assess the interaction between Aβ peptide and a set of curcumin derivatives previously explored in experimental assays. The interactions of ten ligands with Aβ monomers were studied by combining molecular dynamics and molecular docking simulations. We present the in-silico evaluation of the interaction between these derivatives and the Aβ42 peptide, both in the monomeric and fibril forms. The results show that a single substitution in curcumin could significantly enhance the interaction between the derivatives and the Aβ42 monomers when compared to a double substitution. In addition, the molecular docking simulations showed that the interaction between the curcumin derivatives and the Aβ42 monomers occur in a region critical for peptide aggregation. Results showed that a single substitution in curcumin improved the interaction