https://www.selleckchem.com/products/E7080.html These findings provide new insight into PMS activation by less-toxic metal oxides as catalysts and demonstrate that Mn-based materials can be used to effectively treat water matrices containing emerging pollutants.Constructing effective interphase boundary is one of the efficient approaches for improving photocatalytic performances of semiconductor materials. In this work, an anatase/rutile-TiO2 (AR-TiO2) heterophase junction with appropriate carbon content was successfully fabricated via an in-situ phase transformation process. The phase transformation started from the inner core of the nanoparticles and the area of phase interface between anatase and rutile was carefully controlled by regulating the activation temperature. The well-established type-II band alignment between two TiO2 phases with residual carbon as additional charge transfer intermediary which significantly improved the light-harvesting and photoinduced electron-hole pair separation. As a result, the optimal AR-TiO2-550 catalyst (without adding commonly used Pt as co-catalyst) remarkably enhanced photocatalytic H2 generation (201 μmol h-1 g-1), which was about 12-fold to that of P25. The AR-TiO2-550 heterophase junction also showed long-term stability under simulated solar light irradiation. This research provides a new phase engineering route for developing high-efficient photocatalysts.Photo-generated radicals play an important role in photocatalytic reactions, yet numerous radicals undergo self-quenching before contact with the substrate because of their ultrafast lifetimes and limited diffusion distances, which decreases the utilization of free radicals and reduces the activity of photocatalysts. Herein, both hierarchical pores and oxygen vacancies (OVs) were successfully introduced into a titanium-based metal-organic framework (MOF), namely MIL-125-NH2 (MIL for Materials of Institut Lavoisier), via a simple and controllable acid etching method. Th