Staufen1 (STAU1) is an RNA-binding protein (RBP) that interacts with double-stranded RNA structures and has been implicated in regulating different aspects of mRNA metabolism. Previous studies have indicated that STAU1 interacts extensively with RNA structures in coding regions (CDSs) and 3'-untranslated regions (3'UTRs). In particular, duplex structures formed within 3'UTRs by inverted-repeat Alu elements (IRAlus) interact with STAU1 through its double-stranded RNA-binding domains (dsRBDs). Using 3' region extraction and deep sequencing coupled to ribonucleoprotein immunoprecipitation (3'READS + RIP), together with reanalyzing previous STAU1 binding and RNA structure data, we delineate STAU1 interactions transcriptome-wide, including binding differences between alternative polyadenylation (APA) isoforms. Consistent with previous reports, RNA structures are dominant features for STAU1 binding to CDSs and 3'UTRs. Overall, relative to short 3'UTR counterparts, longer 3'UTR isoforms of genes have stronger STAU1 binding, most likely due to a higher frequency of RNA structures, including specific IRAlus sequences. Nevertheless, a sizable fraction of genes express transcripts showing the opposite trend, attributable to AU-rich sequences in their alternative 3'UTRs that may recruit antagonistic RBPs and/or destabilize RNA structures. https://www.selleckchem.com/products/BIBF1120.html Using STAU1-knockout cells, we show that strong STAU1 binding to mRNA 3'UTRs generally enhances polysome association. However, IRAlus generally have little impact on STAU1-mediated polysome association despite having strong interactions with the protein. Taken together, our work reveals complex interactions of STAU1 with its cognate RNA substrates. Our data also shed light on distinct post-transcriptional fates for the widespread APA isoforms in mammalian cells.Inhibitors of 3-hydroxy-3-methylglutaryl-CoA reductase (HMGCR), statins, which are used to prevent cardiovascular diseases, are associated with a modest increase in the risk of new-onset diabetes. To investigate the role of HMGCR in the development of β-cells and glucose homeostasis, we deleted Hmgcr in a β-cell-specific manner by using the Cre-loxP technique. Mice lacking Hmgcr in β-cells (β-KO) exhibited hypoinsulinemic hyperglycemia as early as postnatal day 9 (P9) due to decreases in both β-cell mass and insulin secretion. Ki67-positive cells were reduced in β-KO mice at P9; thus, β-cell mass reduction was caused by proliferation disorder immediately after birth. The mRNA expression of neurogenin3 (Ngn3), which is transiently expressed in endocrine progenitors of the embryonic pancreas, was maintained despite a striking reduction in the expression of β-cell-associated genes, such as insulin, pancreatic and duodenal homeobox 1 (Pdx1), and MAF BZIP transcription factor A (Mafa) in the islets from β-KO mice. Histological analyses revealed dysmorphic islets with markedly reduced numbers of β-cells, some of which were also positive for glucagon. In conclusion, HMGCR plays critical roles not only in insulin secretion but also in the development of β-cells in mice.Diabetic macular edema (DME) remains a leading cause of vision loss worldwide. DME is commonly treated with intravitreal injections of vascular endothelial growth factor (VEGF)-neutralizing antibodies. VEGF inhibitors (anti-VEGFs) are effective, but not all patients fully respond to them. Given the potential side effects, inconvenience, and high cost of anti-VEGFs, identifying who may not respond appropriately to them and why is essential. Herein we determine first the response to anti-VEGFs, using spectral-domain optical coherence tomography scans obtained from a cohort of patients with DME throughout the 1st year of treatment. We found that fluid fully cleared at some time during the 1st year in 28% of eyes ("full responders"); fluid cleared only partly in 66% ("partial responders"); and fluid remained unchanged in 6% ("nonresponders"). To understand this differential response, we generated induced pluripotent stem cells (iPSCs) from full responders and nonresponders, from subjects with diabetes but no DME, and from age-matched volunteers without diabetes. We differentiated these iPSCs into endothelial cells (iPSC-ECs). Monolayers of iPSC-ECs derived from patients with diabetes showed a marked and prolonged increase in permeability upon exposure to VEGF; the response was significantly exaggerated in iPSC-ECs from nonresponders. Moreover, phosphorylation of key cellular proteins in response to VEGF, including VEGFR2, and gene expression profiles, such as that of neuronal pentraxin 2, differed between full responders and nonresponders. In this study, iPSCs were used in order to predict patients' responses to anti-VEGFs and to identify key mechanisms that underpin the differential outcomes observed in the clinic. This approach identified NPTX2 as playing a significant role in patient-linked responses and as having potential as a new therapeutic target for DME. In multiplex MS families, we determined the humoral immune response to Epstein-Barr virus nuclear antigen 1 (EBNA-1)-specific immunoglobulin γ (IgG) titers in patients with MS, their healthy siblings, and biologically unrelated healthy spouses and investigated the role of specific genetic loci on the antiviral IgG titers. IgG levels against EBNA-1 and varicella zoster virus (VZV) as control were measured. and tagging single-nucleotide polymorphisms (SNPs) were genotyped. We assessed the associations between these SNPs and antiviral IgG titers. OR for abundant EBNA-1 IgG was the highest in patients with MS and intermediate in their siblings compared with spouses. We confirmed that is associated with abundant EBNA-1 IgG. After stratification for , the EBNA-1 IgG gradient was still significant in patients with MS and young siblings compared with spouses. was not explanatory for EBNA-1 IgG titer gradient. No associations for VZV IgG were found. In families with MS, the EBNA-1 IgG gradient being the highest in patients with MS, intermediate in their siblings, and lowest in biologically unrelated spouses indicates a genetic contribution to EBNA-1 IgG levels that is only partially explained by carriership. In families with MS, the EBNA-1 IgG gradient being the highest in patients with MS, intermediate in their siblings, and lowest in biologically unrelated spouses indicates a genetic contribution to EBNA-1 IgG levels that is only partially explained by HLA-DRB1*1501 carriership.