https://www.selleckchem.com/products/8-bromo-camp.html The low-temperature cracking performance of asphalt is considered one of the main deteriorations in asphalt pavements. However, there have been few studies on the low-temperature cracking performance of asphalt under heat and light together. Hence, the ductility test, bending beam rheometer (BBR) test, and asphalt composition analysis test are combined to investigate the low-temperature cracking performance under heat and light together based on the climatic conditions of China. The styrene-butadiene-styrene block copolymer (SBS)-modified asphalt binders were prepared with different modifier types and base asphalt in this research. The results show that the low-temperature cracking resistance of asphalt reduces under heat and light together. It is obviously reduced at the early stage, and it becomes worse with the increase of the aging time, temperature, and ultraviolet (UV) intensity. The asphalt composition has a significant impact on its low-temperature cracking performance, and the SBS modifier can improve the low-temperature cracking resistance of asphalt. The rational selection of base asphalt and modifier can improve the low-temperature cracking performance of asphalt. Under heat and light together, whether base asphalt or modified asphalt, the change trends of their ductility and component content are similar. Therefore, to improve the anti-cracking ability of the asphalt pavement, it is suggested to use the ductility of asphalt aged by heat and light together for 15 days as the evaluation index of the low-temperature cracking performance of asphalt, and asphalt should be selected according to the temperature and UV intensity of the asphalt pavement use area.Lack of standardized applications of bioinformatics and statistical approaches for pre- and postprocessing of global metabolomic profiling data sets collected using high-resolution mass spectrometry platforms remains an inadequately addressed issue i