5% did not have any idea about phishing attacks, 21.7% had been victim of cybercrimes while only 29.2% of them reported the crime, which reflects their levels of awareness. The paper concludes by offering recommendations based on analysis of the results to promote the level of awareness.Cognitive impairment is a well-known complication of Type 2 diabetes mellitus (T2DM) characterized by cellular insulin resistance, chronic inflammation, and metabolic disturbances. Berberine, gypenosides and bifendate are traditional Chinese herbal medicines with multiple pharmacological activities including anti-inflammation, anti-oxidant, metabolism improvement and memory improvement. To investigate whether they have synergistic effect on T2DM metabolic syndrome and associated memory impairment, we measured in this study the effect of a low dose of berberine/gypenosides/bifendate (BGB) co-administration on metabolism and memory performance of T2DM model mice. We found that BGB co-administration ameliorated metabolic abnormalities of both high-fat diet/streptozotocin (STZ)-induced T2DM mice and db/db mice. However, it did not alleviate memory impairment in either type of T2DM model mice. Since neither berberine, gypenosides nor bifendate alone at the low dose is effective, we presume that BGB co-administration has synergistic action on T2DM metabolic syndrome. In addition, our findings suggest that higher doses of BGB might be required to ameliorate memory impairment than metabolic disturbance associated with T2DM.Groundwater treatment waste (GWTW), as an environmentally friendly renewable nanomaterial, was implemented for the removal of anodized aluminum dye Sanodure Green (SG) from aqueous solutions. The capability of the SG metal complex dye removal was assessed by measuring solution decoloration and chromium elimination degree. GWTW was characterized using FTIR, SEM, EDX, TEM, XPS and surface area measurements. Kinetic curves were obtained by changing initial dye concentration, pH, temperature and adsorbent dose. Kinetic studies showed that up to 90 % of SG dye was removed within a contact time of 20 min. The adsorption of the dye was favourable at 293 K temperature in the acidic pH region (pH 1.5-2.0) with maximum adsorption capacity 185 mg g-1. Langmuir-Freundlich isotherm model as well as hyperbolic tangent, diffusion-chemisorption and Elovich kinetic models accurately describe the dye removal process. The calculated thermodynamic parameters confirmed that SG dye removal occurred spontaneously and exothermically. The magnitude of enthalpy change (ΔH° = -35.80 kJ mol-1) was in agreement with the electrostatic interaction. The adsorption potential of GWTW for SG dye removal was also evaluated using a real wastewater produced after dyeing of anodized aluminum.This study investigated the effect of the addition of starch from "hawthorn" yam (Dioscorea rotundata) and "creole" yam (Dioscorea alata) at different concentrations (0.1%, 0.3%, and 0.5% w/w) on the physicochemical and sensory properties of stirred-type yogurt. Pectin (0.3% w/w) was used as a reference stabilizer. Yogurt with yam starch presented 13.38% less syneresis than yogurts with pectin. At the sensory level, the most accepted treatment was yogurt with "creole" yam starch at 0.1% w/w. During 21 days of storage, yogurt with yam starch ("creole" and "hawthorn") at 0.1% w/w showed a decrease in syneresis between 7% and 8%, while in those with pectin, syneresis remained practically constant in this period. Yogurt with yam starch was characterized as a pseudoplastic fluid, with a lactic acid bacterial count according to NTC 805. Yam starch can be used as stabilizer because it improves the physicochemical, sensory, and rheological characteristics of stirred-type yogurt. Especially the "creole" yam starch (0.1% w/w), which presents the best preference by consumers.This paper is concerned with the concepts of upper and lower β ( ⋆ ) -continuous multifunctions. In particular, several characterizations of upper and lower β ( ⋆ ) -continuous multifunctions are investigated. Furthermore, the relationships between upper and lower β ( ⋆ ) -continuous multifunctions and the other types of continuity for multifunctions are considered.The best management options for cover cropping are largely unknown, including the growth patterns of cover crop (CC) species, optimum termination stages and termination methods. A greenhouse experiment was conducted to explore the following (i) Effect of two termination stages (vegetative and flowering) on the chemical composition (N and CN) of four CCs; (ii) Short-term impacts of living CCs and residues on soil pH, total N, urease and phosphatase activities at the two termination stages, and under two termination methods (slash and spray). Species tested as CCs were, vetch (Vicia dasycarpa L.), field pea (Pisum sativum L.), oats (Avena sativa L.), rye (Secale cereal L.) and a control (no CC). The experiment was set up in a randomized block design with three replications. Soil was sampled at kill and one year after CC kill. Delaying termination from vegetative till flowering stage decreased N in the tissue of P. sativum, A. sativa, V. dasycarpa and S. cereal by 59%, 65%, 44% and 56%, respectively, while their CN ratios increased. Cover crop presence had no effect on soil pH. https://www.selleckchem.com/products/bpv-hopic.html Living CCs had no significant effect on soil N concentration. The activities of urease and phosphatase were stimulated by all the living CC species. Unlike urease, all CC residues had a positive impact on phosphatase activity at one year. Only P. sativum and V. dasycarpa residues increased soil N concentration in the short-term. Compared to flowering, termination at vegetative stage improved soil N concentrations and phosphatase activity at both sampling times. Termination method had no effect on soil N, urease and phosphatase activity at one year. The significant interaction (P less then 0.05) of sampling time, CC and termination stage effects on soil N concentration and phosphatase activity observed in this study indicates that these management approaches can optimize CC benefits and improve soil chemical and biological properties.