Furthermore, co-occurrence analysis allowed us to find a significant non-random association of different Asgard clades with other groups (e.g., Lokiarchaeota with Deltaproteobacteria and Anaerolineae; Odinarchaeota with Bathyarchaeota), suggesting different interaction potentials among these clades. Overall, these findings reveal Asgard archaea as a ubiquitous group worldwide and provide initial insights into their ecological features on a global scale.The sediment load of the Yellow River, once the highest in the world, has decreased to a record low. The annual sediment load (ASL, t·yr-1) in the main stream of the Yellow River in the past 100 years (1919-2018) shows that the ASL was consistently high for the first 60 years and then decreased gradually until 1999, when the Green for Grain Project (GGP) launched on the Loess Plateau caused ASL to drop sharply. https://www.selleckchem.com/products/indisulam.html The annual runoff did not decrease as much as ASL from 1919 to 2018, while it decreased significantly in the middle reaches. With the construction of sediment storage dams, terraces, and reservoirs, especially after the GGP launched, the ASL of the Yellow River has been reduced to historic lows. For example, the annual average Normalized Difference Vegetation Index (NDVI) of the Yellow River Basin increased significantly from 1982 to 2016, and the ASL decreased exponentially with increasing NDVI. Although the annual precipitation has a stationary behavior in the Yellow River, the daily precipitation extremes affecting erosion showed an increase of 7% per degree of warming but did not change the trend of ASL reduction. Therefore, the effective management on the Loess Plateau can control the trend of the sediment load of the Yellow River. Erosion, sediment load, and runoff in changing environments are affected by flood control and drought resistance, so more attention should be paid to these hydrologic processes.Indicators of redox conditions; oxygen, sulphate, nitrate, ammonium, iron and manganese, and in addition, bicarbonate and total organic carbon were studied in groundwater samples contaminated by leachate emanating from Revdalen Landfill (Norway). Based on these variables, the study aimed to deduce the redox conditions in the aquifer. Literature on landfill leachate contamination of confined aquifers is scarce and to the best of our knowledge, this study, which describes long-term analysis of redox chemistry, is the first of its kind in such an environment. Groundwater samples were monitored for a period of 24 years, enabling us to describe redox conditions on both short-term and long-term bases. Levels of measured parameters in the contaminated aquifer varied spatially and with time, but were generally elevated except oxygen; pH (4.9-8.8), oxygen (0-11.3 mg/L), sulphate (0-28 mg/L), nitrate (0-16 mg N/L), ammonium (0.02-40 mg/L), iron (0-99 mg/L), manganese (0.06-16 mg/L), bicarbonate (22-616 mg/L) and total organic carbon (1.3-47 mg/L). From the result, levels of iron, manganese, nitrate and ammonium violated the Norwegian drinking water norms. However, iron, ammonium, total organic carbon and bicarbonate showed strong attenuation along the groundwater flow path. By contrast, oxygen, nitrate and sulphate increased farther out in the plume. The redox conditions that developed in the aquifer were similar to those previously reported for phreatic aquifers, structuring by proximity to the landfill as sulphate-reducing, iron-reducing, manganese-reducing, nitrate-reducing, and finally aerobic condition. Eventually, there was an apparent breakdown of this system due to ecosystem shift in the landfill when leachable reduced ions were depleted and the landfill became aerobic. Overall, the redox framework provided remarkable attenuation to contaminants, and thus prevented potential degradation of ecological health due to the landfill leachate.Biogas slurry is widely used as a crop fertilizer due to its available nitrogen content. However, it remains unclear how biogas slurry application affects soil organic carbon (SOC) status and soil microbial community under typical agricultural systems. Here, under a wheat-rice field experiment, we examined the responses of SOC and soil bacterial and fungal communities to biogas slurry application, both with (BSS) and without (BS) straw return, relative to chemical nitrogen fertilizer with (CFS) and without (CF) straw return. The BS treatment significantly increased total organic carbon (TOC) at all soil depths (0-60 cm), compared to CF. Greater TOC occurred at 20-40 cm depth under BSS relative to all other treatments. However, straw return had no impact on soil TOC content under the CF and CFS treatments. Labile organic carbon (LOC) in the topsoil and recalcitrant organic carbon (ROC) at 20-60 cm depth was significantly greater under BS relative to CF. The bacterial class Gammaproteobacteria and family Hyphomicrobiaceae were found to be specifically abundant under biogas slurry application after one year of wheat-rice double cropping. Network analyses showed that the soil bacterial community under biogas slurry application was more complex than under chemical fertilizer application, while the opposite was true for the fungal community. Correlations between network modules and the SOC fractions indicated that biogas slurry application stimulated soil bacteria and fungi to participate in SOC cycling. The module functionality supports our speculation that soil microorganisms degraded the biogas slurry derived-ROC in the topsoil. Overall, we conclude that substitution of chemical fertilizer with biogas slurry can be beneficial for increasing SOC stocks and, in systems with straw return, enhancing straw decomposition.Tropical pastures play a significant role in the global carbon cycle and are crucial for world livestock production. Despite its importance, there is a paucity of field studies that clarify how tropical pasture species will be affected by environmental changes predicted for tropical regions. Using a temperature-free air-controlled enhancement (T-FACE) system, we increased canopy temperature (+2 °C over ambient) and evaluated the effects of warming under two soil moisture conditions in a factorial design over the physiology, forage production, and forage quality of a tropical forage legume, Stylosanthes capitata. Under well-watered conditions, warming increased the PSII efficiency, net photosynthesis, and aboveground biomass accumulation, but reduced forage quality and digestibility by decreasing crude protein content and increasing lignin content. Non-irrigated conditions under ambient temperature reduced leaf water status presumably promoting the reduction in net photosynthesis, forage production, and forage quality and digestibility.