https://www.selleckchem.com/products/peg300.html Therapeutic ex vivo T cell expansion is limited by low rates and poor functionality, especially for T cells from aged cancer patients. Here, we describe a novel method for T cell stimulation and expansion using a system named SunTag-based clustering of anti-CD3/CD28 scFv (SBCS). In this method, SunTag was used to recruit up to 13 copies of anti-CD3/CD28 scFv for T cell activation. Compared with the traditional method using immobilized CD3/CD28 antibodies, the SBCS system produced approximately 1.5-fold greater expansion of T cells from healthy donors, and more than 2-fold greater expansion of T cells from aged cancer patients after stimulation. The efficiency of expansion depended mainly on the concentration of the clustered polymers of anti-CD3 scFv rather than anti-CD28 scFv. We also demonstrated that the SBCS-expanded T cells could be used to prepare functional chimeric antigen receptor modified T cells for antitumor therapy.Pancreatic cancer is a highly invasive malignant tumor of the digestive system with an unfavorable prognosis worldwide. This trait is thought to be largely attributed to chemoresistance. Chemotherapy is the only hope for patients with advanced pancreatic cancer. Therefore, seeking new effective chemotherapy drugs has become an urgent need. The purpose of our study was to explore whether deoxyelephantopin (DET), a sesquiterpene lactone, has a potential antitumor effect in pancreatic cancer. Additionally, the antitumor effects of DET alone or in combination with gemcitabine (GEM) and the potential mechanism of this combination were revealed. In vitro experiments showed that DET suppressed the proliferation, invasion and metastasis of pancreatic cancer cells, induced cell apoptosis via oxidative stress, and enhanced GEM sensitivity by inhibiting the NF-κB signaling pathway. Beyond that, in vivo experiments showed that DET not only inhibited pancreatic tumor growth and metastasis but also amplified