ia-based materials than the materials' composition and microstructure. Z5HT zirconia showed the highest translucency, however the measured difference is not visually perceptible. Z5HT was considered the most resistant to hydrothermal degradation.Bite forces are studied in order to understand a wide range of factors pertaining to the mastication system. Various strain gauge transducers have been employed to measure bite forces, with several descriptions of these available in the literature; unfortunately, many reports provide insufficient detail to enable accurate reproduction. The aim of this project was to develop a bite force transducer with the capability of measuring maximum voluntary bite forces between individual opposing tooth surfaces. Furthermore, in an attempt to address the issue of vague device descriptions in the available literature, a detailed account of the transducer development has been included. A novel strain gauge transducer was designed and built. Bite forces of forty individuals were measured to verify the capabilities and clinical application of the device.In this work, TC4/TNTZO multi-layered composite as well as TNTZO and TC4 alloys were prepared by direct laser deposition (DLD) to investigate the microstructure, mechanical properties and in vitro bioactivity. The microstructure characterization shows that the multi-layered material is free of cracks and intermetallics while the interface is metallurgically bonded. The fine microstructure was observed in TC4 layer of the TC4/TNTZO multi-layered material, and a large amount of α' martensite exists in the transition zone. Different from the single β phase cellular arrays in the DLD-ed TNTZO alloy, α″ martensite with high volume content formed at the cellular grain boundary in TNTZO zone of DLD-ed TC4/TNTZO. The elastic modulus of the DLD-ed TC4/TNTZO is 64 GPa, decreased about 45% compared to the DLD-ed TC4. The tensile yield strength and elongation along the printing direction are up to 789 MPa and 7%, which are 12% higher than the tensile yield strength of DLD-ed TNTZO and 61% higher than the elongation of DLD-ed TC4 respectively. Moreover, the DLD-ed TC4/TNTZO shows good in vitro bioactivity. The TC4/TNTZO multi-layered composite fabricated by DLD can be regarded as a potential candidate to integrate the advantages of the two Ti-base alloys for application in the biomedical field.Biliary tract rhabdomyosarcoma is a soft tissue malignant musculoskeletal tumor which is located in the biliary tract. Although this tumor represents less than 1% of the total amount of childhood cancers, when localized, a >70% overall 5-year survival rate, the resection is clinically challenging and complications might exist during the biliary obstruction. Although surgery remains a mainstay, complete tumor resection is generally difficult to achieve without mutilation and severe long-term sequelae. https://www.selleckchem.com/ALK.html Therefore, manufacturing multi-material 3D surgical planning prototypes of the case provides a great opportunity for surgeons to learn beforehand what they can expect. Additionally, practicing before the operation enhances the probability of success. That is why different compositions of materials have been characterized to match the mechanical properties of the liver. To do this, Dynamic Mechanical Analysis (DMA) tests and Shore hardness tests have been carried out. Amongst the material samples produced, 6%wt PVA (poly vinyl alcohol)/1%wt PHY (Phytagel)-1FT (Freeze-Thaw cycles) and 1%wt agarose appear as the best options for mimicking the liver tissue in terms of viscoelasticity. Regarding the Shore hardness, the best solution is 1%wt agarose. Additionally, a surgical planning prototype using this last material mentioned was manufactured and validated using a CT (Computed Tomography) scanner. In most of the structures the difference between the 3D model and the organ in terms of dimensions is less than 3.35 mm, which represents a low dimensional error, around 1%. On the other hand, the total manufacturing cost of the 3D physical model was €513 which is relatively low in comparison with other technologies.Schwartz diamond graded porous structures (SDGPSs), constructed by a triply-periodic-minimal-surface diamond unit cell topology, were developed with various unit cell sizes and printed by laser powder bed fusion (LPBF) from a commercially pure titanium powder for bone implant applications. The effect of unit cell size on the printability, strut dimensions, stress and strain distributions, mechanical properties and energy absorption capability of SDGPSs was investigated. The results indicate the good printability of SDGPSs via LPBF with multiple unit cell sizes from 3.5 mm to 5.5 mm through the three-dimensional reconstruction from micro-computed tomography. The unit cell size plays a critical role in both strut diameters and specific surface areas of SDGPSs. An increase in the unit cell size leads to a reduction in the experimental Young's modulus from 673.08 MPa to 518.71 MPa and compressive yield strength from 11.43 MPa to 7.73 MPa. The mechanical properties of LPBF-printed SDGPSs are higher than those predicted by the finite element method, which is attributed to the higher volume fractions of the printed SDGPSs than the designed values. Furthermore, a rise in unit cell size leads to the decrease of energy absorption capability from 6.06 MJ/mm3 to 4.32 MJ/mm3 and exhibits little influence on the absorption efficiency. These findings provide a good understanding and guidance to the optimization on the unit cell size of functionally graded porous structures for desirable properties.Objectives This study aimed to demonstrate the effect of treating titanium-implant surfaces with plasma from two different sources on wettability and initial single-cell adhesion of human osteoblasts and to investigate whether aging affects treatment outcomes. Methods Titanium disks with sandblasted and acid-etched (SLA) surfaces were treated with atmospheric pressure plasma (APP) and low-pressure plasma (LPP). For wetting behavior of the specimens after plasma treatment, the water contact angle was measured. The single-cell detachment force and amount of work of detachment of human osteoblasts were determined with single-cell force spectroscopy (SCFS). To evaluate the aging effect in APP-treated specimens, SCFS was conducted 10 and 60 min after treatment. Results Significantly higher hydrophilicity was observed in the APP and LPP treatment groups than in the control group, but no significant difference was observed between the APP and LPP groups. No significant difference in cell-detachment force or work of detachment was observed, and there were no significant differences according to the conditioning mechanisms and storage time.