https://www.selleckchem.com/products/NXY-059.html The observation of gravitational waves from an asymmetric binary opens the possibility for heavy neutron stars, but these pose challenges to models of the neutron star equation of state. We construct heavy neutron stars by introducing nontrivial structure in the speed of sound sourced by deconfined QCD matter, which cannot be well recovered by spectral representations. Their moment of inertia, Love number, and quadrupole moment are very small, so a tenfold increase in sensitivity may be needed to test this possibility with gravitational waves, which is feasible with third generation detectors.We investigate the stability of a Luttinger liquid, upon suddenly coupling it to a dissipative environment. Within the Lindblad equation, the environment couples to local currents and heats the quantum liquid up to infinite temperatures. The single particle density matrix reveals the fractionalization of fermionic excitations in the spatial correlations by retaining the initial noninteger power law exponents, accompanied by an exponential decay in time with an interaction dependent rate. The spectrum of the time evolved density matrix is gapped, which collapses gradually as -ln(t). The von Neumann entropy crosses over from the early time -tln(t) behavior to ln(t) growth for late times. The early time dynamics is captured numerically by performing simulations on spinless interacting fermions, using several numerically exact methods. Our results could be tested experimentally in bosonic Luttinger liquids.Soliton gases represent large random soliton ensembles in physical systems that exhibit integrable dynamics at the leading order. Despite significant theoretical developments and observational evidence of ubiquity of soliton gases in fluids and optical media, their controlled experimental realization has been missing. We report a controlled synthesis of a dense soliton gas in deep-water surface gravity waves using the tools of non