Drug addiction has been associated with unsuccessful emotion regulation, which can be improved by working memory training (WMT) in healthy populations. This study aimed to assess the effect of WMT on emotion regulation in drug abstainers. We divided 40 male drug abstainers into two groups (i) the training group (n=20) participated in a running memory task for 20 days, and (ii) the control group (n=20) did not participate in any training task. We assessed the emotion regulation questionnaire (ERQ) and frontal electroencephalographic (EEG) activity while viewing pictures (including neutral, positive, negative and drug-related contents) for all participants before and after the training. After WMT for 20 days, the training group adopted more spontaneous emotion regulation strategies compared with control group. The asymmetry scores of training group improved while viewing negative and drug-related pictures compared to pretest, which suggests that they converted from right-brain asymmetry to left-brain asymmetry. However, the control group declined both in the ERQ scores and the asymmetry scores. These results suggest that WMT improves the emotion regulation of drug abstainers.The spinal cord contains a highly collateralized network of descending dopamine (DA) fibers that stem from the dorso-posterior hypothalamic A11 region in the brain, however, the modulatory actions of DA have generally only been assessed in lumbar segments L2-L5. In contrast to these exclusively sensorimotor segments, spinal cords segments T1-L2 and, in mouse, L6-S2, additionally contain the intermediolateral (IML) nucleus, the origin of autonomic nervous system (ANS). Here, we tested if the different spinal circuits in sensorimotor and IML-containing segments react differently to the modulation of the monosynaptic reflex (MSR) by DA. Bath-application of DA (1 μM) led to a decrease of MSR amplitude in L3-L5 segments; however, in IML-containing segments (T10-L2, and S1/2) the MSR response was facilitated. We did not observe any difference in the response between thoracic (sympathetic) and lumbosacral (parasympathetic) segments. Application of the D2-receptor agonists bromocriptine or quinpirole mimicked the effects of DA, while blocking D2 receptor pathways with raclopride or application with the D1-receptor agonist SKF 38393 led to an increase of the MSR in L3-L5 segments and a decrease of the MSR in IML-containing segments. In contrast, in the presence of the gap-junction blockers, carbenoloxone and quinine, DA modulatory actions in IML-containing segments were similar to those of sensorimotor L3-L5 segments. We suggest that DA modulates MSR amplitudes in the spinal cord in a segment-specific manner, and that the differential outcome observed in ANS segments may be a result of gap junctions in the IML.Standing still and focusing on a visible target in front of us is a preamble to many coordinated behaviors (e.g., reaching an object). Hiding behind its apparent simplicity is a deep layering of texture at many scales. The task of standing still laces together activities at multiple scales from ensuring that a few photoreceptors on the retina cover the target in the visual field on an extremely fine scale to synergies spanning the limbs and joints at smaller scales to the mechanical layout of the ground underfoot and optic flow in the visual field on the coarser scales. Here, we used multiscale probability density function (PDF) analysis to show that postural fluctuations exhibit similar statistical signatures of cascade dynamics as found in fluid flow. In participants asked to stand quietly, the oculomotor strain of visually fixating at different distances moderated postural cascade dynamics. Visually fixating at a comfortable viewing distance elicited posture with a similar cascade dynamics as posture with eyes closed. Greater viewing distances known to stabilize posture showed more diminished cascade dynamics. In contrast, nearest and farthest viewing distances requiring greater oculomotor strain to focus on targets elicited a dramatic strengthening of postural cascade dynamics, reflecting active postural adjustments. Critically, these findings suggest that vision stabilizes posture by reconfiguring the prestressed poise that prepares the body to interact with different spatial layouts.In the present study, we investigated scalp-recorded activities of motor and cognitive preparation preceding stimulus presentation in relatively simple and complex visual motor discriminative response tasks (DRTs). Targets and non-targets were presented (with equal probability) in both tasks, and the complexity of the task depended on the discrimination and categorization processing load, which was based on the number of stimuli used (two stimuli in the simple- and four in the complex-DRT, respectively). We recorded event-related potentials (ERPs) in 16 participants in simple-DRT and 16 participants in complex-DRT. At the behavioral level, the performance was faster and more accurate in simple-DRT. https://www.selleckchem.com/products/heparan-sulfate.html Two pre-stimulus ERPs were considered the central Bereitschaftspotential (BP) and the prefrontal negativity (pN). Both components showed earlier onset and larger amplitude in the complex-DRT. Overall, the simple-DRT required less motor and cognitive preparation in premotor and prefrontal areas compared to the complex-DRT. Present findings also suggest that the pN component was not reported in previous studies, likely because most ERP literature focusing on pre-stimulus ERP used simple-DRTs, and with such a task the pN amplitude is small and can easily go undetected.The use of catheters for vascular access may be associated with colonization by Candida species and their biofilm-forming ability. The latter can harbor two or more species of Candida yeast. In the sense, we conducted our study at the University Hospital of Tlemcen in west Algeria at the neuro-surgery unit, that aims (or which aims) to evaluate the ability to form mixed biofilm by dual-species Candida albicans/Candida glabrata co-isolated from intravascular catheters and their interaction in biofilm. That is the first report in Algeria. During this study, we took photographic images by scanning electron microscopy of 3 catheters implanted before 48 h and co-colonized by dual-species. From all taken samples, 34 catheters were altered by yeasts from which three were co-colonized by two Candida species and C. albicans established synergistic and competitive interactions with C. glabrata species in mixed biofilm tested.