https://www.selleckchem.com/products/glutathione.html In recent years, large scale datasets of paired images and sentences have enabled the remarkable success in automatically generating descriptions for images, namely image captioning. However, it is labour-intensive and time-consuming to collect a sufficient number of paired images and sentences in each domain. It may be beneficial to transfer the image captioning model trained in an existing domain with pairs of images and sentences (i.e., source domain) to a new domain with only unpaired data (i.e., target domain). In this paper, we propose a cross-modal retrieval aided approach to cross-domain image captioning that leverages a cross-modal retrieval model to generate pseudo pairs of images and sentences in the target domain to facilitate the adaptation of the captioning model. To learn the correlation between images and sentences in the target domain, we propose an iterative cross-modal retrieval process where a cross-modal retrieval model is first pre-trained using the source domain data and then applied to domains to further demonstrate the effectiveness of our method.Despite the remarkable advances in visual saliency analysis for natural scene images (NSIs), salient object detection (SOD) for optical remote sensing images (RSIs) still remains an open and challenging problem. In this paper, we propose an end-to-end Dense Attention Fluid Network (DAFNet) for SOD in optical RSIs. A Global Context-aware Attention (GCA) module is proposed to adaptively capture long-range semantic context relationships, and is further embedded in a Dense Attention Fluid (DAF) structure that enables shallow attention cues flow into deep layers to guide the generation of high-level feature attention maps. Specifically, the GCA module is composed of two key components, where the global feature aggregation module achieves mutual reinforcement of salient feature embeddings from any two spatial locations, and the cascaded pyramid attenti