https://www.selleckchem.com/products/n6-methyladenosine.html We find that wave transmission and energy-dissipation strongly depend on the loading direction. Also, the hydrated collagen peptide can dissipate five times more energy than dehydrated one. Our work suggests a distinct role of collagen in term of wave transmission of different tissues such as tendon and eardrum. This study can step toward understanding the mechanical behavior of collagen upon transient loads, impact loading and fatigue, and designing biomimetic and bioinspired materials to replace specific native tissues such as the tympanic membrane.Clinical application of the amniotic membrane (AM) in vascular reconstruction was limited by poor processability, rapid biodegradation, and insufficient hemocompatibility. In this work, decellularized AM was digested to a thermosensitive hydrogel and densely cross-linked in the nanoscale as "enhanced" collagenous fibers. Via N-(3-dimehylaminopropyl)-N'-ethylcarbodiimide and N-hydroxysuccinimide (EDC/NHS) catalysis, REDV was further grafted to simulate anticoagulant substances on naturally derived blood vessels. This modification approach endowed AM with rapid endothelialization and rare vascular restenosis. Through adjusting the fixation condition, the pore size and mechanical stability of the fiber network were approximate to those of natural tissues and precisely designed to fit for cell adhesion. AM was synchronously fixed by alginate dialdehyde (ADA) and EDC/NHS, forming a "double-cross-linked" stable structure with significantly improved mechanical strength and resistance against enzymic degradation. The hemolytic and platelet adhesion test indicated that ADA/REDV-AM could inhibit hemolysis and coagulation. It also exhibited excellent cytocompatibility. It selectively accelerated adsorption and migration of endothelial cells (ECs) while impeding adhesion and proliferation of smooth muscle cells (SMCs). It maintained EC superiority in competitive growth an