https://www.selleckchem.com/products/og-l002.html In this work, a novel three-chamber modular plant microbial fuel cell (PMFC) was designed and tested for long term sustainable generation of bioelecricity. The modular setup makes operation easy and hassle-free as placing every components, i.e., membranes, electrodes, and even changing the plants, becomes very convenient. The novel membrane assembly design combined with pre-activated electrodes with increased surface area helped promote biofilm growth and electrocatalytic activity on anode and cathode surface. The new design resulted in improved performance and stability of the PMFC system for long term usage with minimal maintenance. The use of composite membrane consisting of clay, bentonite, and fly ash mixture was used for the first time in PMFC research and proved to be an excellent alternative to existing expensive Nafion membranes. The power density and current density has increased up to 24.56 mW m-2 and 52 mA m-2 respectively, which is 63% increase in power production and is amongst the highest in PMFC research.This work describes the development and optimization of an electrochemical method to evaluate pesticide induced inhibition of honey bee (Apis mellifera) acetylcholinesterase (AChE) by means of acetylcholinesterase biosensor. The inhibition assay was based on the detection of changes in electrochemical activity of the enzyme caused by pesticide. As transducer, nitrogen doped carbon dots BSA (N-CD/BSA) nanocomposite electrodeposited on pencil graphite electrode was used to covalently immobilize AChE. The as-synthesized nanocomposite and fabricated electrodes were characterized for the structural, functional and electrochemical properties. Nanocomposite promoted the electron transfer reaction to catalyze the electro-oxidation of thiocholine and a large current response was obtained by cyclic voltammetry at 0.77 V, indicating successful immobilization of AChE. The sensitivity of Diazinon, an OP insecticid