https://www.selleckchem.com/products/Sodium-butyrate.html https://www.selleckchem.com/products/Sodium-butyrate.html A mimic of soppy tissue disease: intra-arterial treatment drug use making hand swelling and also digital camera ischemia. The optimized imprinting time was 70 min, giving an optimal performance with high practical imprinting efficiency (up to 41%), high imprinting factor (4.2), high binding affinity (Kd=(2.05 ± 0.09) × 10-5 M), as well as excellent recognition selectivity. Moreover, compared to bare MNPs, Mb-imprinted MNPs possessed markedly better pH tolerance. Finally, the selective extraction of Mb from human serum sample by Mb-imprinted MNPs was experimentally confirmed and the recoveries of Mb in spiked serum ranged from (91.12 ± 6.81)% to (107.99 ± 7.76)%, indicating that the Mb-imprinted MNPs could be competent for the selective analysis of Mb in real bio-samples like human serum with high precision and reliability.Fiber-based techniques make it possible to implant a miniaturized and flexible surface plasmon resonance (SPR) sensor into the human body for glucose detection. However, the miniaturization of fiber SPR sensors results in low sensitivity compared with traditional prism-type SPR sensors due to limited sensing area. In this paper, we proposed a D-shaped fiber SPR sensor with a composite nanostructure of molybdenum disulfide (MoS2)-graphene to improve the sensor sensitivity. Compared with the traditional cylindrical fiber, the planar sensing area on the side-polished fiber makes it easier to modify two-dimensional materials. Chemical vapor deposition (CVD) graphene and CVD MoS2 were modified on the sensor surface to obtain the MoS2-graphene composite nanostructure. π-π stacking interactions were used to modify pyrene-1-boronic acid (PBA) on the graphene. The excellent photoelectric properties of the MoS2-graphene composite nanostructure and the ability of PBA to specifically bind glucose molecules improved the glucose detection performan